Locally Solvable Tasks
and the Limitations of Valency Arguments

Hagit Attiya Armando Castaneda Sergio Rajsbaum
Technion UNAM UNAM



Local Proof-Styles Vs Global Proof-Styles

(e.g. FLP85) (e.g. BG93, HS93, S793)



Local Proof-Style

 Each stage:

o single configuration holding a
property

o indistinguishability analysis

O some Successors

O pick a successor

e Essentially, it finds an invariant ﬁ

|t corners the protocol O OOOOD

« FLP85’s invariant: bivalent

* Liveness => no safety

« Safety => no liveness



Local Proof-Style

» Each stage:

o single configuration holding a
property

o indistinguishability analysis

O some Successors

f I
O pick a successor [
» Essentially, it finds an invariant ﬁ
It corners the protocol B AAAD

* FLP85’s invariant: bivalent

* Liveness => no safety

» Safety => no liveness



Local Proof-Style

 Each stage:

o single configuration holding a
property

o indistinguishability analysis

O some Successors

O pick a successor

» Essentially, it finds an invariant
|t corners the protocol
 FLP85’s invariant: bivalent

* Liveness => no safety

« Safety => no liveness

/IN

JLAL ALY




Local Proof-Style

 Each stage:

o single configuration holding a
property
o indistinguishability analysis

O some SUCCESSOrs <

O pick a successor |
e Essentially, it finds an invariant | ﬁ
* It corners the protocol slolololleole el AAAD

« FLP85’s invariant: bivalent

* Liveness => no safety

« Safety => no liveness



Local Proof-Style

 Each stage:

o single configuration holding a
property

o indistinguishability analysis

O some Successors

O pick a successor

e Essentially, it finds an invariant
|t corners the protocol

« FLP85’s invariant: bivalent

* Liveness => no safety

« Safety => no liveness



Local Proof-Style

Started with FLP85: There is no 1-resilient message-passing protocol for consensus

Consensus:
o Termination: all correct processes decide
o Validity: a decided value is a proposal
o Agreement: correct processes decide the same value

Same proof-style for many tasks:
o Approximate agreement
© Randomized consensus
o Concurrent data structures

Simple and elegant approach

Typically, only a few assumptions are needed (e.g. full-information)



Global Proof-Style

« Only final configurations
e All in a combinatorial object

« Commutative properties in the
object

« Analyze properties of the object Zi ﬁ E} EE
 There exists a mistake A& s
« BG93, HS93, SZ93: Sperner’s

lemma

e Liveness => no safety



Global Proof-Style

« Only final configurations
e All in a combinatorial object

« Commutative properties in the

object
« Analyze properties of the object 7? ﬁ
* There exists a mistake @é S S ES AE BSES S5 CS@
« BG93, HS93, SZ93: Sperner’s

lemma

* Liveness => no safety



Global Proof-Style

Started with BG93, HS93, SZ93: There is no wait-free read/write shared memory
protocol for k-set agreement

k-set agreement:
o Termination: all correct processes decide
o Validity: a decided value is a proposal
o k-Agreement: correct processes decide at most k distinct values

Same proof-style for other tasks, e.g. renaming, weak symmetry breaking
Powerful tool: Solvability characterization of any task.

Assumptions are needed. Some models are problematic (e.g. non-compact,
no round-structure)

Almost global proof. Ficher&Lynch82: t+1 round lower bound for synchronous
consensus



Local vs Global

Is there a local impossibility proof for set-agreement or renaming?

Can a set agreement or renaming protocol be ‘cornered’?

Is there always a local impossibility proof?

Is the complexity of global style-proofs unavoidable?



Local vs Global

* Is there a local impossibility proof for set-agreement or renaming?
e Can a set agreement or renaming protocol be ‘cornered’?
* Is there always a local impossibility proof?

 Is the complexity of global style-proofs unavoidable?

Our result: There is no local impossibility proof for (n-1)-set agreement or
(2n-2)-renaming in Iterated Immediate Snapshot (11IS) model




Local vs Global

Is there a local impossibility proof for set-agreement or renaming?

Can a set agreement or renaming protocol be ‘cornered’?

Is there always a local impossibility proof?

Is the complexity of global style-proofs unavoidable?

Our result: There is no local impossibility proof for (n-1)-set agreement or
(2n-2)-renaming in Iterated Immediate Snapshot (11IS) model

This talk about set agreement




Previous Work

Line of research recently started by Alistarh, Aspnes, Ellen, Gelashvili
and Zhu in 2019

Defined extension-based proofs in Non-uniform IIS (NIIS)

Their result: No extension-based proof for k-set agreement in NIIS

Our approach is different

More about this later



Iterated Immediate Snapshot (lIS)

* n asynchronous processes

« Wait-free: at most n-1 crash failures

 Round-based structure

 Full-information: each process writes all it knows

* Infinite bidimensional shared memory: M[1 ... ][1 ... n]
 Round r: processes do immediate snapshot in MJr]

e Immediate snapshot:
o Sequence of concurrency classes

O Processes in a concurrency class
write together then snapshot together



Iterated Immediate Snapshot (lIS)

n asynchronous processes

Wait-free: at most n-1 crash failures

Round-based structure Round Proc ID
: . , ) A

Full-information: each process writes all it krfows l

Infinite bidimensional shared memory: M[1 ... ][1 ... n]

Round r: processes do immediate snapshot in MJr]

Immediate snapshot:
o Sequence of concurrency classes

O Processes in a concurrency class
write together then snapshot together



Iterated Immediate Snapshot (lIS)

n asynchronous processes

« Wait-free: at most n-1 crash failures

 Round-based structure Round Proc ID
: . , LM A

» Full-information: each process writes all it kr{ows l

* Infinite bidimensional shared memory: M[1 ... ][1 ... n]

 Round r: processes do immediate snapshot in MJr]

* Immediate snapshot: e &
o Sequence of concurrency classes
O Processes in a concurrency class
write together then snapshot together {AKB,C}




Iterated Immediate Snapshot (lIS)

n asynchronous processes

« Wait-free: at most n-1 crash failures

 Round-based structure Round Proc ID
: . , ) A

» Full-information: each process writes all it kr{ows l

* Infinite bidimensional shared memory: M[1 ... ][1 ... n]

 Round r: processes do immediate snapshot in MJr]

* Immediate snapshot: 3 ‘ ‘
A4

o Sequence of concurrency classes |

A

o Processes in a concurrency class
write together then snapshot together {AKB,C}



Iterated Immediate Snapshot (lIS)

n asynchronous processes

« Wait-free: at most n-1 crash failures

 Round-based structure Round Proc ID
: . , LM A

» Full-information: each process writes all it kr{ows l

* Infinite bidimensional shared memory: M[1 ... ][1 ... n]

 Round r: processes do immediate snapshot in MJr]

* Immediate snapshot: e &
o Sequence of concurrency classes
. A
o Processes in a concurrency class
write together then snapshot together {AKB,C}




Iterated Immediate Snapshot (lIS)

n asynchronous processes
 Wait-free: at most n-1 crash failures

 Round-based structure Round Proc ID
. . , L N A
» Full-information: each process writes all it kr{ows l

* Infinite bidimensional shared memory: M[1 ... ][1 ... n]

 Round r: processes do immediate snapshot in M[f]

* Immediate snapshot: ‘ ‘ ‘
N4

|

A B| C

o Sequence of concurrency classes \L

o Processes in a concurrency class
write together then snapshot together {AXB,C}



Iterated Immediate Snapshot (lIS)

n asynchronous processes

« Wait-free: at most n-1 crash failures

 Round-based structure Round Proc ID
: . , LM A

» Full-information: each process writes all it kr{ows l

* Infinite bidimensional shared memory: M[1 ... ][1 ... n]

* Round r: processes do immediate snapshot in M[r] Q ‘ ’

* Immediate snapshot:

o Sequence of concurrency classes

A B| C

o Processes in a concurrency class
write together then snapshot together {AKB,C}



Iterated Immediate Snapshot (lIS)

n asynchronous processes

« Wait-free: at most n-1 crash failures

 Round-based structure Round Proc ID
: . , LM A

» Full-information: each process writes all it kr{ows l

* Infinite bidimensional shared memory: M[1 ... ][1 ... n]

 Round r: processes do immediate snapshot in MJr]

* Immediate snapshot: e &
o Sequence of concurrency classes
O Processes in a concurrency class
write together then snapshot together {A,CHB}




Iterated Immediate Snapshot (lIS)

n asynchronous processes

* \Wait-free: at most n-1 crash failures

* Round-based structure Round Proc ID
. . , B\ N

» Full-information: each process writes all it kr{ows l

* Infinite bidimensional shared memory: M[1 ... ][1 ... n]

 Round r: processes do immediate snapshot in MJr] ’

* Immediate snapshot: 3 ‘ ‘
A4 N4

|

A C

o Sequence of concurrency classes |

o Processes in a concurrency class
write together then snapshot together {A,CHB}



Iterated Immediate Snapshot (lIS)

n asynchronous processes

« Wait-free: at most n-1 crash failures

 Round-based structure Round Proc ID
: . , LM A

» Full-information: each process writes all it kr{ows l

* Infinite bidimensional shared memory: M[1 ... ][1 ... n]

 Round r: processes do immediate snapshot in MJr] Q 7
o o

* Immediate snapshot: a 6 .

o Sequence of concurrency classes

A C

o Processes in a concurrency class
write together then snapshot together {A,CHB}



Iterated Immediate Snapshot (lIS)

n asynchronous processes
 Wait-free: at most n-1 crash failures

 Round-based structure Round Proc ID
. . , L N A
» Full-information: each process writes all it kr{ows l

* Infinite bidimensional shared memory: M[1 ... ][1 ... n]

 Round r: processes do immediate snapshot in M[f]

* Immediate snapshot: ‘ ‘ ‘

o Sequence of concurrency classes \L
A B C

o Processes in a concurrency class
write together then snapshot together {A,CHB}



Iterated Immediate Snapshot (lIS)

n asynchronous processes

« Wait-free: at most n-1 crash failures

 Round-based structure Round Proc ID
: . , LM A

» Full-information: each process writes all it kr{ows l

* Infinite bidimensional shared memory: M[1 ... ][1 ... n]

* Round r: processes do immediate snapshot in M[r] Q ‘ ’

* Immediate snapshot:

o Sequence of concurrency classes

A B| C

o Processes in a concurrency class
write together then snapshot together {A,CHB}



Topological Interpretation of IS

 View = vertex

Configuration = set of views = (combinatorial) simplex

Partial configuration = subset of a configuration = simplex

Initial configurations = input simplexes

A bunch of simplexes make a (combinatorial) simplicial complex

Like a graph in higher dimensions

Commutativity of operations in a single object



Topological Interpretation of IS




Topological Interpretation of IS




Topological Interpretation of IS

Solo in round 1

A




Topological Interpretation of IS

Solo in round 1
Only sees itself




Topological Interpretation of IS

{pHria) P




Topological Interpretation of IS

O

O—e

input simplex (initial configuration)

x(c) O—e—O—@

one-round protocol complex

X’(o) O—@—O0—@—O0—@—0O0—@—O0—@

two-round protocol complex



Topological Interpretation of IS

o
O—@
input sim?/(initial cwration)
(% N
x(e) O O0—®
one-roy& protocowplex

Z \Y
X’(o) O—@—O0—@—O0—@—0O0—@—O0—@

two-round protocol complex




Topological Interpretation of IS

o
O—©
input simy(initial cWration)
& ¥ Solo executions

x(0) O—e—O0—®)

one-royd protocowplex
A \Y

O—@—CO0O—@—CO—@——C

two-round protocol complex




Bounded Termination

« Task: Input/Output relation (consensus, set agreement, renaming)
« Task with finite number of input configurations => Bounded termination

* Processes decide/terminate after R rounds; R is unknown a priori

Protocol Generic(input: v_i)
view_i=v_i
forr=1uptoRdo

view_i = IS(M[r], view_i)
endfor
decide dec(view_li)
endProtocol



Task Solvability

« X"'(7) = complex with all configuration after m 1IS rounds starting at configuration o

« Protocol = function from vertices of X" () (R-round views) to decisions




Task Solvability

« X"'(7) = complex with all configuration after m 1IS rounds starting at configuration o

« Protocol = function from vertices of X" () (R-round views) to decisions




Global Impossibility Proof for 2-Set Agreement




Global Impossibility Proof for 2-Set Agreement

Sperner’s lemma: there is a simplex
with all colors
= dan execution with 3 distinct decisions
=3 protocol for 2-set agreement




Local Proof-Style in IIS

For j-round simplex (configuration) o' € Xj(U),
x""7(0") = R-round simplexes at the end of ¢’-only extensions with R-j rounds

Valency of ¢’: set with all decisions in X (o)

Phase i > O:
O Starts with a (i-1)-round simplex 9i—1 € X' (o0)
O All successors after one round in X(7i—1) C Xi(UO) (i-round simplexes)
© The hypothetical protocol gives all valencies in x(oi-1)
O Pick a simplex i in x(oi-1)

Phase 0O: Pick oo using all valencies of input simplexes (initial configurations)
When i = R, the protocol must reveal all decisions in X(9r-1) C x"*(00)

The protocol does not exist if valencies or decisions are inconsistent



Local Proof-Style in lIS




Local Impossibility Proof for Consensus




Local Proof for Set Agreement?

Set agreement is impossible so there must be mistakes, i.e. simplexes with
more than k distinct decisions

Can a protocol hide its unavoidable mistakes?

How to hide your mistakes?

What needs to be avoided?



Local Proof for Set Agreement?

« Fully-valent. Equivalent of bivalent for set agreement.
Sperner’s lemma => there is a mistake in X(0r-1)

0

* There are more cases.
Sort of Sperner’s lemma => there is a mistake in X(0r-1)




Local Proof for Set Agreement?

Key observation: distinct protocols induce same valencies

The hypothetical protocol can be more than just one protocol

Each protocol has unavoidable mistakes ‘in different places’

Strateqgy: pick the decision of a protocol with no local mistakes in X(o0Rr-1)

Our formalization: Valency tasks and local solvability




Valency Tasks for Set Agreement

» Atask like consensus, set agreement or renaming
e Input simplexes = simplexes in X""H(o) for a set agreement input simplex o, R > 1

« Each simplex has a valency satisfying validity, i.e. valency is a subset of proposals




Valency Tasks for Set Agreement

» Atask like consensus, set agreement or renaming
e Input simplexes = simplexes in X""H(o) for a set agreement input simplex o, R > 1

« Each simplex has a valency satisfying validity, i.e. valency is a subset of proposals




Valency Tasks for Set Agreement

» Atask like consensus, set agreement or renaming
e Input simplexes = simplexes in X""H(o) for a set agreement input simplex o, R > 1

« Each simplex has a valency satisfying validity, i.e. valency is a subset of proposals




k-Local Solvability for Set Agreement

. Valency task (o, X" (o), val)

e ltis k-locally solvable if Yo' € X" (0), there is a R-round protocol 0o : V(x" (o)) — in(o)
such that:

o Valency-validity: decisions satisfy valencies specified by val

R
© k-Local agreement: no more than k decisions in every simplex in x(c") € x" (o)

« Rough idea: a bunch of protocols ‘solve each part’ of x'(o)

« val satisfies validity = 9.~ is a Sperner coloring

. Sperner’s lemma = - has mistakes somewhere in X' (¢) but not in x(¢")




2-Local Solvability for Set Agreement




Main Result

VR > 1, there are valency tasks (7, X" (), val) for set agreement
that are (n-1)-locally solvable, for every input simplex o

VR > 1, there is no valency task (7, x"*"*(0), val) for consensus
that is 1-locally solvable, whenever o has distinct inputs




No Local Style-Proofs for Set Agreement - Valencies

For simplicity, every process starts with its ID (inputless version)

There is one input simplex ¢ = {(£,0), (P1,1),...,(Pp,n)}
0

Vo' C o, valency of ¢’ = inputs in ¢ 0.2 0.1

o is a fully-valent configuration 2° 42 1

Pick any R > 1 and consider an (n-1)-locally solvable valency task (¢, X"~ (o), val)

For each i € {1,..., R — 2} set valencies to the simplexes in X'(?) that are
compatible with val (not trivial, not super hard)




No Local Style-Proofs for Set Agreement - Strategy

Strategy:
O© Inphase:=0,00 =0
© Inphase? € {1,---, B — 1}, reply the valencies in X(9i-1) C x'(0)

© In phase i = R, reply the decisions in X0 € x*(o) by protocol 503_1

Existence of 9oz—1 due to local solvability (o, X"~ (¢), val)

No more than n-1 distinct decisions in x(¢" ") € x"(o)

No local impossibility proof for set agreement QED

R and the valencies can be revealed in advance = no adaptiveness is needed



Variants of Local Proof-Style in lIS

R does not need to be unknown

Valencies do not need to be unknown

Pick more than one simplex in each phase (but not a lot)

Successors after several rounds in the future instead of just one

Even go all the way up to one round before decision



Differences with Alistarh, Aspnes, Ellen, Gelashvili and Zhu

* Interaction between a protocol and a prover

* Each phase starts with a finite execution E

* The prover asks decision or valency queries to the protocol

 After finitely many queries, the prover commits on a finite extension of E

* The prover wins if it finds a contradiction or performs infinitely many phases
* Otherwise the protocol wins

* There is no impossibility extension based-proof if there is a protocol that wins
against any prover



Differences with Alistarh, Aspnes, Ellen, Gelashvili and Zhu

 Processes can decide at distinct rounds

e Non-uniform IIS (NIIS) model.
Complexes: non-uniform subdivisions

« Their result: there is no extension-based proof for the impossibility of k-set
agreement in the NIIS model

* They do not allow bounded termination

« Otherwise, prover performs exhaustive search, constructs simplicial complex
(non-uniform subdivision) and applies Sperner’s lemma

* Not in the spirit of local style-proofs but it is allowed (if bounded termination is
assumed)



Wrapping Up

Simple formalization of local style-proofs in lIS

Valency tasks and local-solvability

There are locally solvable valency tasks for set agreement

— No local impossibility proof for set agreement

The result holds for unbounded and bounded termination

(2n-2)-Renaming. Studied through weak symmetry breaking

Same approach taking care of symmetries of decisions



Future Work

Variants of local style-proofs

Other tasks (e.g. approximate agreement)

Other wait-free shared memory models

Non-compact models (e.g. t-resilient); bounded termination is an issue

Models with no round-structure



