Locally Solvable Tasks and the Limitations of Valency Arguments

Hagit Attiya

Technion

Armando Castañeda

Sergio Rajsbaum UNAM

Local Proof-Styles Vs Global Proof-Styles (e.g. FLP85) (e.g. BG93, HS93, SZ93)

- Each stage:
 - single configuration holding a property
 - indistinguishability analysis
 - some successors
 - pick a successor
- Essentially, it finds an invariant
- It corners the protocol
- FLP85's invariant: bivalent
- Liveness => no safety
- Safety => no liveness

- Each stage:
 - single configuration holding a property
 - indistinguishability analysis
 - some successors
 - pick a successor
- Essentially, it finds an invariant
- It corners the protocol
- FLP85's invariant: bivalent
- Liveness => no safety
- Safety => no liveness

- Each stage:
 - single configuration holding a property
 - indistinguishability analysis
 - some successors
 - pick a successor
- Essentially, it finds an invariant
- It corners the protocol
- FLP85's invariant: bivalent
- Liveness => no safety
- Safety => no liveness

- Each stage:
 - single configuration holding a property
 - indistinguishability analysis
 - some successors
 - pick a successor
- Essentially, it finds an invariant
- It corners the protocol
- FLP85's invariant: bivalent
- Liveness => no safety
- Safety => no liveness

- Each stage:
 - single configuration holding a property
 - indistinguishability analysis
 - some successors
 - pick a successor
- Essentially, it finds an invariant
- It corners the protocol
- FLP85's invariant: bivalent
- Liveness => no safety
- Safety => no liveness

- Started with FLP85: There is no 1-resilient message-passing protocol for consensus
- Consensus:
 - Termination: all correct processes decide
 - Validity: a decided value is a proposal
 - Agreement: correct processes decide the same value
- Same proof-style for many tasks:
 - Approximate agreement
 - Randomized consensus
 - Concurrent data structures
- Simple and elegant approach
- Typically, only a few assumptions are needed (e.g. full-information)

Global Proof-Style

- Only final configurations
- All in a combinatorial object
- Commutative properties in the object
- Analyze properties of the object
- There exists a mistake
- BG93, HS93, SZ93: Sperner's lemma
- Liveness => no safety

Global Proof-Style

- Only final configurations
- All in a combinatorial object
- Commutative properties in the object
- Analyze properties of the object
- There exists a mistake
- BG93, HS93, SZ93: Sperner's lemma
- Liveness => no safety

Global Proof-Style

- Started with BG93, HS93, SZ93: There is no wait-free read/write shared memory protocol for k-set agreement
- k-set agreement:
 - Termination: all correct processes decide
 - Validity: a decided value is a proposal
 - k-Agreement: correct processes decide at most k distinct values
- Same proof-style for other tasks, e.g. renaming, weak symmetry breaking
- Powerful tool: Solvability characterization of **any** task.
- Assumptions are needed. Some models are problematic (e.g. non-compact, no round-structure)
- <u>Almost global proof</u>. Ficher&Lynch82: t+1 round lower bound for synchronous consensus

Local vs Global

- Is there a local impossibility proof for set-agreement or renaming?
- Can a set agreement or renaming protocol be 'cornered'?
- Is there always a local impossibility proof?
- Is the complexity of global style-proofs unavoidable?

Local vs Global

- Is there a local impossibility proof for set-agreement or renaming?
- Can a set agreement or renaming protocol be 'cornered'?
- Is there always a local impossibility proof?
- Is the complexity of global style-proofs unavoidable?

Our result: There is no local impossibility proof for (n-1)-set agreement or (2n-2)-renaming in Iterated Immediate Snapshot (IIS) model

Local vs Global

- Is there a local impossibility proof for set-agreement or renaming?
- Can a set agreement or renaming protocol be 'cornered'?
- Is there always a local impossibility proof?
- Is the complexity of global style-proofs unavoidable?

Our result: There is no local impossibility proof for (n-1)-set agreement or (2n-2)-renaming in Iterated Immediate Snapshot (IIS) model

This talk about set agreement

Previous Work

- Line of research recently started by Alistarh, Aspnes, Ellen, Gelashvili and Zhu in 2019
- Defined extension-based proofs in Non-uniform IIS (NIIS)
- <u>Their result</u>: No extension-based proof for k-set agreement in NIIS
- Our approach is different
- More about this later

- n asynchronous processes
- Wait-free: at most n-1 crash failures
- Round-based structure
- Full-information: each process writes all it knows
- Infinite bidimensional shared memory: M[1 ...][1 ... n]
- Round r: processes do immediate snapshot in M[r]
- Immediate snapshot:
 - Sequence of concurrency classes
 - Processes in a concurrency class write together then snapshot together

- n asynchronous processes
- Wait-free: at most n-1 crash failures
- Round-based structure
 Round Proc ID
- Full-information: each process writes all it knows
- Infinite bidimensional shared memory: M[1 ...][1 ... n]
- Round r: processes do **immediate snapshot** in M[r]
- Immediate snapshot:
 - Sequence of concurrency classes
 - Processes in a concurrency class write together then snapshot together

- n asynchronous processes
- Wait-free: at most n-1 crash failures
- Round-based structure
 Round Proc ID
- Full-information: each process writes all it knows
- Infinite bidimensional shared memory: M[1 ...][1 ... n]
- Round r: processes do immediate snapshot in M[r]
- Immediate snapshot:
 - Sequence of concurrency classes
 - Processes in a concurrency class write together then snapshot together

 $\{A\}\{B,C\}$

- n asynchronous processes
- Wait-free: at most n-1 crash failures
- Round-based structure
 Round Proc ID
- Full-information: each process writes all it knows
- Infinite bidimensional shared memory: M[1 ...][1 ... n]
- Round r: processes do immediate snapshot in M[r]
- Immediate snapshot:
 - Sequence of concurrency classes
 - Processes in a concurrency class write together then snapshot together

- n asynchronous processes
- Wait-free: at most n-1 crash failures
- Round-based structure
 Round Proc ID
- Full-information: each process writes all it knows
- Infinite bidimensional shared memory: M[1 ...][1 ... n]
- Round r: processes do immediate snapshot in M[r]
- Immediate snapshot:
 - Sequence of concurrency classes
 - Processes in a concurrency class write together then snapshot together

- n asynchronous processes
- Wait-free: at most n-1 crash failures
- Round-based structure
 Round Proc ID
- Full-information: each process writes all it knows
- Infinite bidimensional shared memory: M[1 ...][1 ... n]
- Round r: processes do immediate snapshot in M[r]
- Immediate snapshot:
 - Sequence of concurrency classes
 - Processes in a concurrency class write together then snapshot together

- n asynchronous processes
- Wait-free: at most n-1 crash failures
- Round-based structure
 Round Proc ID
- Full-information: each process writes all it knows
- Infinite bidimensional shared memory: M[1 ...][1 ... n]
- Round r: processes do immediate snapshot in M[r]
- Immediate snapshot:
 - Sequence of concurrency classes
 - Processes in a concurrency class write together then snapshot together

- n asynchronous processes
- Wait-free: at most n-1 crash failures
- Round-based structure
 Round Proc ID
- Full-information: each process writes all it knows
- Infinite bidimensional shared memory: M[1 ...][1 ... n]
- Round r: processes do immediate snapshot in M[r]
- Immediate snapshot:
 - Sequence of concurrency classes
 - Processes in a concurrency class write together then snapshot together

- n asynchronous processes
- Wait-free: at most n-1 crash failures
- Round-based structure
 Round Proc ID
- Full-information: each process writes all it knows
- Infinite bidimensional shared memory: M[1 ...][1 ... n]
- Round r: processes do immediate snapshot in M[r]
- Immediate snapshot:
 - Sequence of concurrency classes
 - Processes in a concurrency class write together then snapshot together

- n asynchronous processes
- Wait-free: at most n-1 crash failures
- Round-based structure
 Round Proc ID
- Full-information: each process writes all it knows
- Infinite bidimensional shared memory: M[1 ...][1 ... n]
- Round r: processes do immediate snapshot in M[r]
- Immediate snapshot:
 - Sequence of concurrency classes
 - Processes in a concurrency class write together then snapshot together

- n asynchronous processes
- Wait-free: at most n-1 crash failures
- Round-based structure
 Round Proc ID
- Full-information: each process writes all it knows
- Infinite bidimensional shared memory: M[1 ...][1 ... n]
- Round r: processes do immediate snapshot in M[r]
- Immediate snapshot:
 - Sequence of concurrency classes
 - Processes in a concurrency class write together then snapshot together

- n asynchronous processes
- Wait-free: at most n-1 crash failures
- Round-based structure
 Round Proc ID
- Full-information: each process writes all it knows
- Infinite bidimensional shared memory: M[1 ...][1 ... n]
- Round r: processes do immediate snapshot in M[r]
- Immediate snapshot:
 - Sequence of concurrency classes
 - Processes in a concurrency class write together then snapshot together

- View = vertex
- Configuration = set of views = (combinatorial) simplex
- Partial configuration = subset of a configuration = simplex
- Initial configurations = input simplexes
- A bunch of simplexes make a (combinatorial) simplicial complex
- Like a graph in higher dimensions
- Commutativity of operations in a single object

input simplex (initial configuration)

one-round protocol complex

two-round protocol complex

Bounded Termination

- <u>Task:</u> Input/Output relation (consensus, set agreement, renaming)
- Task with **finite number** of input configurations => **Bounded termination**
- Processes decide/terminate after R rounds; R is unknown a priori

```
Protocol Generic(input: v_i)
view_i = v_i
for r = 1 up to R do
view_i = IS(M[r], view_i)
endfor
decide dec(view_i)
endProtocol
```

Task Solvability

- $\chi^m(\sigma)$ = complex with all configuration after m IIS rounds starting at configuration σ
- Protocol = function from vertices of $\chi^{R}(\sigma)$ (R-round views) to decisions

The protocol solves a task T \Leftrightarrow decisions in simplexes of $\chi^{R}(\sigma)$ satisfy T's specification, for every input simplex σ

Task Solvability

- $\chi^m(\sigma)$ = complex with all configuration after m IIS rounds starting at configuration σ
- Protocol = function from vertices of $\chi^{R}(\sigma)$ (R-round views) to decisions

The protocol solves a task T \Leftrightarrow decisions in simplexes of $\chi^{R}(\sigma)$ satisfy T's specification, for every input simplex σ

Task T is solvable in IIS ⇔ T is solvable in standard wait-free read/write shared memory model

Global Impossibility Proof for 2-Set Agreement

Global Impossibility Proof for 2-Set Agreement

Local Proof-Style in IIS

- For j-round simplex (configuration) $\sigma' \in \chi^j(\sigma)$, $\chi^{R-j}(\sigma') = R$ -round simplexes at the end of σ' -only extensions with R-j rounds
- <u>Valency of σ' </u>: set with all decisions in $\chi^{R-j}(\sigma')$
- <u>Phase i > 0:</u>
 - ^o Starts with a (i-1)-round simplex $\sigma_{i-1} \in \chi^{i-1}(\sigma_0)$
 - ^o All successors after one round in $\chi(\sigma_{i-1}) \subset \chi^i(\sigma_0)$ (i-round simplexes)
 - ° The hypothetical protocol gives all valencies in $\chi(\sigma_{i-1})$
 - Pick a simplex σ_i in $\chi(\sigma_{i-1})$
- <u>Phase 0:</u> Pick σ_0 using all valencies of input simplexes (initial configurations)
- When i = R, the protocol must reveal all decisions in $\chi(\sigma_{R-1}) \subset \chi^{R}(\sigma_{0})$
- The protocol does not exist if valencies or decisions are inconsistent

Local Impossibility Proof for Consensus

Local Proof for Set Agreement?

- Set agreement is impossible so **there must be mistake**s, i.e. simplexes with more than k distinct decisions
- Can a protocol **hide** its unavoidable mistakes?
- **How** to hide your mistakes?
- What needs to be **avoided**?

Local Proof for Set Agreement?

• Fully-valent. Equivalent of bivalent for set agreement. Sperner's lemma => there is a mistake in $\chi(\sigma_{R-1})$

• There are more cases. Sort of Sperner's lemma => there is a mistake in $\chi(\sigma_{R-1})$

Local Proof for Set Agreement?

- <u>Key observation</u>: distinct protocols induce same valencies
- The hypothetical protocol can be more than just one protocol
- Each protocol has unavoidable mistakes 'in different places'
- <u>Strategy</u>: pick the decision of a protocol with **no local mistakes** in $\chi(\sigma_{R-1})$
- Our formalization: Valency tasks and local solvability

Valency Tasks for Set Agreement

• A task like consensus, set agreement or renaming

 σ

- Input simplexes = simplexes in $\chi^{R-1}(\sigma)$ for a set agreement input simplex σ , R > 1
- Each simplex has a valency satisfying validity, i.e. valency is a subset of proposals

Valency Tasks for Set Agreement

• A task like consensus, set agreement or renaming

 σ

- Input simplexes = simplexes in $\chi^{R-1}(\sigma)$ for a set agreement input simplex σ , R > 1
- Each simplex has a valency satisfying validity, i.e. valency is a subset of proposals

Valency Tasks for Set Agreement

• A task like consensus, set agreement or renaming

 σ

- Input simplexes = simplexes in $\chi^{R-1}(\sigma)$ for a set agreement input simplex σ , R > 1
- Each simplex has a valency satisfying validity, i.e. valency is a subset of proposals

k-Local Solvability for Set Agreement

- Valency task $\langle \sigma, \chi^{R-1}(\sigma), val \rangle$
- It is <u>k-locally solvable</u> if $\forall \sigma' \in \chi^{R-1}(\sigma)$, there is a R-round protocol $\delta_{\sigma'} : V(\chi^R(\sigma)) \to in(\sigma)$ such that:
 - \circ Valency-validity: decisions satisfy valencies specified by val
 - ° k-Local agreement: no more than k decisions in every simplex in $\chi(\sigma') \subset \chi^R(\sigma)$
- <u>Rough idea</u>: a bunch of protocols 'solve each part' of $\chi^{R}(\sigma)$
- val satisfies validity $\Rightarrow \delta_{\sigma'}$ is a Sperner coloring
- Sperner's lemma $\Rightarrow \delta_{\sigma'}$ has mistakes <u>somewhere</u> in $\chi^{R}(\sigma)$ but <u>not in</u> $\chi(\sigma')$

2-Local Solvability for Set Agreement

Main Result

 $\forall R > 1$, there are valency tasks $\langle \sigma, \chi^{R-1}(\sigma), val \rangle$ for set agreement that are (n-1)-locally solvable, for every input simplex σ

 $\forall R > 1$, there is no valency task $\langle \sigma, \chi^{R-1}(\sigma), val \rangle$ for consensus that is 1-locally solvable, whenever σ has distinct inputs

No Local Style-Proofs for Set Agreement - Valencies

- For simplicity, every process starts with its ID (inputless version)
- There is one input simplex $\sigma = \{(P_0, 0), (P_1, 1), ..., (P_n, n)\}$
- $\forall \sigma' \subset \sigma$, valency of σ' = inputs in σ'
- σ is a fully-valent configuration

For each *i* ∈ {1,...,*R*−2}, set valencies to the simplexes in *χⁱ*(*σ*) that are <u>compatible</u> with *val* (not trivial, not super hard)

No Local Style-Proofs for Set Agreement - Strategy

- Strategy:
 - In phase i = 0, $\sigma_0 = \sigma$
 - In phase $i \in \{1, \ldots, R-1\}$, reply the valencies in $\chi(\sigma_{i-1}) \subset \chi^i(\sigma)$

^o In phase i = R, reply the decisions in $\chi(\sigma^{R-1}) \subset \chi^R(\sigma)$ by protocol $\delta_{\sigma_{R-1}}$

- Existence of $\delta_{\sigma_{R-1}}$ due to local solvability $\langle \sigma, \chi^{R-1}(\sigma), val \rangle$
- No more than n-1 distinct decisions in $\chi(\sigma^{R-1}) \subset \chi^R(\sigma)$
- No local impossibility proof for set agreement QED
- R and the valencies can be revealed in advance \Rightarrow no adaptiveness is needed

Variants of Local Proof-Style in IIS

- *R* does not need to be unknown
- Valencies do not need to be unknown
- Pick more than one simplex in each phase (but not a lot)
- Successors after several rounds in the future instead of just one
- Even go all the way up to one round before decision

Differences with Alistarh, Aspnes, Ellen, Gelashvili and Zhu

- Interaction between a **protocol** and a **prover**
- Each phase starts with a finite execution E
- The prover asks **decision or valency queries** to the protocol
- After finitely many queries, the prover **commits** on a finite extension of E
- The **prover wins** if it finds a contradiction or performs infinitely many phases
- Otherwise the **protocol wins**
- There is **no impossibility extension based-proof** if there is a protocol that wins against any prover

Differences with Alistarh, Aspnes, Ellen, Gelashvili and Zhu

- Processes can decide at distinct rounds
- Non-uniform IIS (NIIS) model.
 <u>Complexes:</u> non-uniform subdivisions

- <u>Their result</u>: there is no extension-based proof for the impossibility of k-set agreement in the NIIS model
- They do not allow bounded termination
- Otherwise, prover performs exhaustive search, constructs simplicial complex (non-uniform subdivision) and applies Sperner's lemma
- Not in the spirit of local style-proofs but it is allowed (if bounded termination is assumed)

Wrapping Up

- Simple formalization of local style-proofs in IIS
- Valency tasks and local-solvability
- There are locally solvable valency tasks for set agreement
- \Rightarrow No local impossibility proof for set agreement
- The result holds for unbounded and bounded termination
- (2n-2)-Renaming. Studied through weak symmetry breaking
- Same approach taking care of symmetries of decisions

Future Work

- Variants of local style-proofs
- Other tasks (e.g. approximate agreement)
- Other wait-free shared memory models
- Non-compact models (e.g. t-resilient); bounded termination is an issue
- Models with no round-structure