S

Striosomes selectivelyamediate
value-based leafning possibly
’ through FSis

Sabrina Drammis & Jiajia Zhao

a



Alexander Friedman,'# Emily Hueske,'# Sabrina M. Drammis,"® Sebastian E. Toro Arana,’* Erik
D. Nelson,'® Cody W. Carter,'® Sebastien Delcasso,"® Raimundo X. Rodriguez,'® Hope
Lutwak,'® Kaden S. DiMarco,"*Qingyang Zhang," Lara |. Rakocevic,' Dan Hu,' Joshua K. Xiong,’
Jiajia Zhao," Leif G. Gibb," Tomoko Yoshida,' Cody A. Siciliano,” Thomas J. Diefenbach,? Charu
Ramakrishnan,® Karl Deisseroth,®> Ann M. Graybiel®*

'McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

2Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA

3Department of Bioengineering, Stanford University, Stanford, CA 94305, USA

4Equal contribution

®Equal contribution

6Lead Contact









Associated disorders

Parkinson’s disease
Huntington’s disease
Autism spectrum disorder
Addiction

Mood

Bipolar disorder



Graybiel & Ragsdale 1978
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medium spiny neurons (MSNs)
| spiny projection neurons (SPNs)

95% of neurons in the striatum
D1/D2 dopamine receptors

GABAergic inhibitory




Paravalbumin (PV) inhibitory interneurons

Perisomatic PV terminals

R} v

common inhibitory interneuron in striatum

majority synapse on the soma (or close)

MSN cell body PV.terminals a|SO Ca”ed e
FSI and HFN
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What is the function of the striosomal compartments in
learning a decision-making task?

(How does aging and disorder, HD, affect learning)

(Are PV neurons selectively critical for control of
learning-related activity?)
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*striosomal activity, but not matrix activity,
iIs shaped by discrimination learning
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*striosomal activity, but not matrix activity,
encodes discrimination levels during
learning
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*aging results in less negative C_,
striosomal activity
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*aging results in reduced correlation
between striosomal activity and task
engagement
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*aging results in a reduction between task
engagement and learning
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*fewer matrix PV-MSN contact points (than
striosomes) may underlie the PV responses
activity differences across compartments
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Intact striosomal circuit, intact learning
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Further ideas

Old mice have a disconnect b/w engagement and discrimination. This could be introduced into the model.

HD neural activity is cost-driven - can we design learning-from-cost vs learning-from-reward versions of our
model?

How does cortical input and spine reduction in HD animals incorporate into our model?
What are the interesting pieces/levels to focus on?
Model the learning process.

Circuit modeling in a more fine-tuned way, so that the model behavior (SPN activity - baseline pattern) is more
tightly replicating empirical data.

What is the emergent behavior when we have a network of these neurons (neural population)?
SNR differences - how could this impact general network learning ability?

Aging affect speed of learning? Perhaps can prove that the relatationship of discrimination level and time taken to
learn (maybe some definition of convergence)



Contributions

Striosomes are critical for valance-based learning, driven by engagement
Selective dysfunction in striosomes prevents learning in aging and HD

Matrix and striosomal compartments have striking anatomical and functional
differences

Through a SNN model we demonstrate a hypotheses that the PV-striosomal
microcircuit is central to controlling striosomal response activity and learning
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