Thalamocortical contribution to credit assignment in neural systems

Mien Brabeeba Wang
3/26/2021
Learning in brain

• Dopamine represents reward prediction error.

• Want to reinforce synapses that lead to positive reward prediction error and weaken synapses that lead to a negative ones.

• How can one do it when multiple cues in multiple contexts and multiple actions taken before rewards arrive?
Credit assignment

Structural

 Contextual

Temporal

Go left and receive reward

UK US
Backpropagation

- Great empirical results and match internal representation in brains

- Weight transport: \(\delta W_i \propto \frac{\partial E}{\partial W_i} = e_i f(a_{i-1})^T, e_i = W_{i+1}^T e_{i+1} \odot f'(a_i) \)

- Separation of error v.s. activity
Continual learning

- Forward transfer and backward transfer
- Complementary memory system and replay
- Regularization to protect past task
- Dynamic architecture
Temporal credit assignment

TD learning:
\[e_t = r_t + V(s_{t+1}) - V(s_t), \quad V(s_t) = \mathbb{E} \left[\sum_{i=0}^{\infty} r_{t+i} \mid s_t \right] . \]

- LSTM to make non-Markov environment Markov
- Backpropagation through time
Backpropagation => General Brains => Specialized hardwares
Thalamus
Cortex
Basal Ganglia

DA
Learning in Cortex?

• There are high concentration of dopamine active transporters (DAT) in striatum to make sure the circuit can do precise credit assignment.

• Since the cortex has low DAT concentration, dopamine behaves on a much slower timescale (30 minutes-1 hour).

• So DA is unlikely to support RL in a similar manner as in BG.

• And there are lots of evidences that cortex is doing more Hebbian learning types of plasticity (unsupervised learning).

• However, one can observe that cortex develop task-relevant representation.
Learning in Cortex?

• Consolidate learning signal from BG? Ans: duplicate and slow

• Cortex => slow plasticity but fast at generalization and flexible behaviors

• Protein synthesis is slow (5-10 minutes), how does one learn on the fly?

• Meta learning: learning to learn
A

\[a_t = f(s_t) \]

B

\[a_t = f_c(s_t), c = g(s_{\leq t}) \]
Thalamus as control functions

- Traditionally, thalamus is thought to gate and relay information to the cortex.

- However, there are works that show some thalamic populations do not change the baseline firing rate of cortical neurons.

- Instead, they amplify the functional connectivity.
Basal ganglia

• Traditionally, it is thought that basal ganglia is in charge of action/strategy selection based on reinforcement learning

• However, recent studies also found both input/output pathways from all cortex

• We propose that basal ganglia selects these thalamic control functions

• Furthermore, it serves as a trainer for meta learning
Thalamus

Cortex

Basal Ganglia

Fast timescale

Slow timescale

Generalizable Representation

Flexible Contextual Association

Control Functions

Selection

Flexible

Contexual

Association

Representation

Generalizable

Control Functions

Selection

Flexible

Contexual

Association

Generalizable

Control Functions

Selection

Flexible

Contexual

Association

Generalizable

Control Functions

Selection

Flexible

Contexual

Association

Generalizable

Control Functions

Selection
Transient memory

Long memory

Thalamus
Cortex
Basal Ganglia