Thalamocortical contribution to credit assignment in neural systems Mien Brabeeba Wang 3/26/2021

Learning in brain

- Dopamine represents reward prediction error.
- and weaken synapses that lead to a negative ones.
- actions taken before rewards arrive?

Want to reinforce synapses that lead to positive reward prediction error

How can one do it when multiple cues in multiple contexts and multiple

Credit assignment

Structural

Contextual

Backpropagation

Great empirical results and match internal representation in brains

• Weight transport:
$$\delta W_i \propto \frac{\partial E}{\partial W_i} = e_i f(a_{i-1})^{\top}, \ e_i = W_{i+1}^{\top} e_{i+1} \circ f'(a_i)$$

• Separation of error v.s. activity

Continual learning

- Forward transfer and backward transfer
- Complementary memory system and replay
- Regularization to protect past task
- Dynamic architecture

Temporal credit assignment

TD learning: $e_t = r_t + V(s_{t+1}) - V$

- LSTM to make non-Markov environment Markov
- Backpropagation through time

$$V(s_t), V(s_t) = \mathbb{E}\left[\sum_{i=0}^{\infty} r_{t+i} \middle| s_t\right].$$

Backpropagation => General Brains => Specialized hardwares

- There are high concentration of dopamine active transporters (DAT) in striatum to make sure the circuit can do precise credit assignment
- Since the cortex has low DAT concentration, dopamine behaves on a much slower timescale (30 minutes-1 hour).
- So DA is unlikely to support RL in a similar manner as in BG
- And there are lots of evidences that cortex is doing more Hebbian learning types of plasticity (unsupervised learning)
- However, one can observe that cortex develop task-relevant representation

Learning in Cortex?

- Consolidate learning signal from BG? Ans: duplicate and slow
- Cortex => slow plasticity but fast at generalization and flexible behaviors
- Protein synthesis is slow (5-10 minutes), how does one learn on the fly?
- Meta learning: learning to learn

Learning in Cortex?

Thalamus as control functions

- Traditionally, thalamus is thought to gate and relay information to the cortex
- However, there are works that show some thalamic populations do not change the baseline firing rate of cortical neurons
- Instead, they amplify the functional connectivity

е

- Traditionally, it is thought that basal ganglia is in charge of action/strategy selection based on reinforcement learning
- However, recent studies also found both input/output pathways from all cortex
- We propose that basal ganglia selects these thalamic control functions
- Furthermore, it serves as a trainer for meta learning

Basal ganglia

