LEARNING HIERARCHICALLY STRUCTURED CONCEPTS

Nancy Lynch Spring, 2020 Brain Algorithms Reading Group Meeting 11, May 1, 2020

Joint work with Frederik Mallmann-Trenn

An Algorithmic Theory of Brain Networks

- We use a distributed algorithms approach to study abstract versions of problems solved by real brains: Decision-making, attention, encoding and representation, recognition, learning.
- Define problems as probabilistic functions from input firing sequences to output firing sequences.
- Define abstract algorithms, based on those that occur in brains, modeled as discrete, stochastic Spiking Neural Networks (SNNs).

- Prove that the algorithms solve the problems.
- Analyze algorithms: network size, convergence time, energy usage.
- Prove corresponding lower bounds.

An Algorithmic Theory of Brain Networks

• General questions:

- How do results depend on model assumptions (about timing, memory, probability)?
- How robust are algorithms (to noise, errors, changes)?
- What can be learned, what must be pre-designed?
- Describe algorithms using composition, abstraction?

Work should lead to:

- New understanding of brain behavior.
- Opportunities for work in two communities:
 - Theoretical computer scientists can study abstract problems, prove upper and lower bounds.
 - Neuroscientists can model real brain mechanisms, validate models with experiments.

Our Relevant Prior Work

- 1. Model: Stochastic Spiking Neural Networks
- 2. Winner-Take-All algorithms and lower bounds
- 3. Similarity testing, compression, short-term memory,...

1. Model: Stochastic Spiking Neural Networks

- Nancy Lynch, Cameron Musco, Merav Parter. Computational tradeoffs in biological neural networks: Self-stabilizing Winner-Take-All networks. ITCS 2017. ArXiv 2019.
- $v^t = 1$ if and only if neuron v spikes at time t.

$$v^{t} = 1$$
 $v^{t+1} = 1$ $v^{t+2} = 0$ $v^{t+3} = 1$

• $pot(v,t) = \Sigma_u u^{t-1} w(u,v) - b(v)$

• $\Pr[v^t = 1] = 1/(1 + e^{-pot(v,t)})$

Stochastic Spiking Neural Networks

 We usually assume that neurons are strictly inhibitory or strictly excitatory, i.e., w(u, v) ≥ 0 for all v or w(u, v) ≤ 0 for all v.

- We usually ignore other biological features: Refractory period, spike propagation delay, memory, noise on synapses,...
- Some can be simulated in our model.
- We also sometimes augment the model.

Neural Network Model

- A weighted directed graph, nodes represent neurons, edges represent synapses, weights represent synaptic strength.
- Regard weight = 0 as absence of edge, weight > 0 as excitatory, weight < 0 as inhibitory.

Neural Network Model

- Neurons are either input neurons *X*, output neurons *Y*, or auxiliary neurons *A*.
- Input and output neurons are excitatory.
- Auxiliary neurons may be either excitatory or inhibitory.

Network Dynamics

- Configuration C: Assigns a firing state,
 0 or 1, to each neuron; C(u) = 1
 means it's firing and = 0 means it's not.
- Execution $\alpha = C^0, C^1, C^2, ..., a$ sequence of configurations.
- $u^t = C^t(u)$ denotes the firing state of neuron u at time t.
- Input firing patterns are arbitrary.
- Initial firing patterns for non-input (auxiliary and output) neurons are part of the network definition.
- For every infinite input execution, the network produces a probability distribution on infinite executions, by applying the stochastic firing dynamics for all non-input neurons at all rounds.

Composing Spiking Neural Networks

- Nancy Lynch, Cameron Musco. A Compositional Model for Spiking Neural Networks. arXiv 1808.03884
- Idea: Combine networks that solve simple problems into larger networks that solve more complex problems.
- E.g., consider two networks \mathcal{N}_1 and \mathcal{N}_2 .
- Compatibility:
 - Internal neurons of \mathcal{N}_1 cannot be neurons of \mathcal{N}_2 , and vice versa.
 - \mathcal{N}_1 and \mathcal{N}_2 have no common output neurons.
 - May have common input neurons.
 - Outputs of one may be inputs of the other.
- Composition rules:
 - Neurons of $\mathcal{N}_1 \circ \mathcal{N}_2$ = union of neurons of \mathcal{N}_1 and \mathcal{N}_2 .
 - Outputs of $\mathcal{N}_1 \circ \mathcal{N}_2$ = union of outputs of \mathcal{N}_1 and \mathcal{N}_2 .
 - Likewise for internal neurons.
 - Inputs: Inputs of \mathcal{N}_1 that aren't outputs of \mathcal{N}_2 , and vice versa.

Composing Spiking Neural Networks

• Attention network: Processes a sequence of inputs and focuses attention on the "relevant" ones.

Adding memory to neuron states

- Lili Su, C. J. Chang, Nancy Lynch. Spike-Based Winner-Take-All Computation. Neural Computation 2019.
- Basic model: Neuron's state at each time is a Boolean,
 - 1 = firing, 0 = not firing.
- Augmented model with local memory:
 - Useful in some algorithms, bio-realistic
 - Neuron may remember its own *m* previous firing states.
 - And/or its own incoming potentials based on its incoming neighbors' *m* previous firing states:

 $pot(v,t) = \Sigma_u u^{t-1} w(u,v) - b(v)$

• General memory model, allows modeling of accumulated potential, refractory periods.

Learning

- Lynch, Mallmann-Trenn. Learning Hierarchically Structured Concepts, ArXiv 2019, 2020.
- We have added features to model changing edge weights, as needed to support learning algorithms.
- New state component, a vector of incoming weights.
- Changes based on Oja's rule, which incrementally adjusts weights to correspond to firing patterns for incoming neighbors.

2. Winner-Take-All

- Nancy Lynch, Cameron Musco, Merav Parter.
 Computational Tradeoffs in Biological Neural Networks: Self-Stabilizing Winner-Take-All Networks. ITCS 2017.
- Cameron Musco PhD thesis, Chapter 5
- New ArXiv version 2019.

Winner-Take-All: $WTA(n, t_c, t_s, \delta)$

- *n* fixed inputs, *n* corresponding outputs.
- Starting from any state, with probability $\geq 1 \delta$, network:
 - Converges, within a (short) time t_c , to a single firing output, which corresponds to a firing input, and then
 - Remains stable for a (long) time t_s .

Simple Solution with Two Inhibitors

• Stability inhibitor *a_s*:

- Fires with high probability whenever ≥ 1 outputs fire.
- Prevents outputs that didn't fire at time t from firing at time t + 1.
- Convergence inhibitor *a_c*:
 - Fires with high probability whenever ≥ 2 outputs fire.
 - Causes any output that fires at time t to fire at time t + 1 with probability ~¹/₂.

Simple Solution with Two Inhibitors

- Main idea: Approximately half of currently-firing outputs stop firing at each step.
- So with constant probability, there is some time $t_c \leq \log n$ such that exactly one output fires at time t_c .
- Moreover, after time t_c, with high probability, this selected output continues to fire for a long time t_s.
- During this stable period, only a_s fires, preventing all other outputs from firing.

Main Theorem

- Theorem 1: Assume γ ≥ c log (n t_s /δ). Then starting from any state, with probability ≥ 1 δ, the network converges, within time t_c ≈ c log n log (¹/_δ), to a single firing output corresponding to a firing input, and remains stable for time t_s.
 Also:
 - More than two inhibitors can give faster convergence.
 - Can't solve WTA much faster with two inhibitors.
 - Can't solve it at all with one inhibitor.

Extension to k-WTA

- Lili Su, CJ Chang, Nancy Lynch. Spike-Based Winner-Take-All Computation. Neural Computation 2019.
- Now inputs fire, not at every round, but at different "rates".
- Model input firing by independent Bernoulli processes.
- Problem: Choose the k neurons with highest firing rates.

Lower Bound

- Fix *n*, *k*.
- For a set *R* of possible rates, define *D*(*R*) to be a certain statistic, capturing the "minimum distance" between different rates in *R* (related to KL-divergence).
- Fix an error probability $\delta \in (0,1)$.
- Lower bound theorem: There is no algorithm that solves k-WTA with error probability δ , for all rate assignments from R, and that converges within time

$$((1-\delta)\log(k(n-k))-1)D(R).$$

Upper Bound

- Simple algorithm, time $O(\log(\frac{1}{\delta}) + \log(k(n-k))D(R))$
- Uses memory: *m* previous firing states, where $m = \Omega(\log\left(\frac{1}{\delta}\right) + \log(k(n-k))D(R)).$
- Algorithm idea: Output neurons that fire excite themselves (self-loops), inhibit others (clique).
- Neuron v_i fires at time *t* exactly if either:
 - It didn't fire at time t 1, and its total incoming potential, based on firings at times t 1, ..., t m, is $\geq b$ (its bias), or
 - It did fire at time t 1, and its total incoming potential, based on firings at times t 1, ..., t m, is ≥ 1 .
- Making this work to solve k-WTA requires finetuning the weights and biases.

3. Similarity Testing, Compression, Clustering

 Nancy Lynch, Cameron Musco, Merav Parter. Neuro-RAM Unit with Applications to Similarity Testing and Compression in Spiking Neural Networks. DISC 2017.

Short-Term Memory

- Yael Hitron, Nancy Lynch, Cameron Musco, Merav Parter. Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks, ITCS 2020.
- n input neurons, $k \ll n$ output neurons.
- An arbitrary set of k distinct input firing patterns are presented, each for "sufficiently long".
- Network should learn a distinct "short code" for each input pattern: a single output neuron should learn to fire in response to later presentation of that same pattern. 0 1 1
- Short-term memory: Coding remembered by persistent firing, self-loops.
- Not long-term: no changes to network.
- Algorithm requires few internal neurons, short training periods.
- Techniques: Random projection, WTA, inhibition of already-assigned outputs.

Learning Hierarchically-Structured Concepts Nancy Lynch, Frederik Mallmann-Trenn. Learning Hierarchically-Structured Concepts. <u>arXiv:1909.04559v2</u>, February, 2020.

- 1. Introduction
- 2. Data Model
- 3. Network Model
- 4. Problem Statements
- 5. Algorithms for Recognition and Noise-Free Learning
- 6. Extension: Noisy Learning
- 7. Lower Bounds
- 8. Conclusions

1. Introduction

- Q: How are concepts with structure represented in the brain? How are they recognized? How are they learned?
- Inspiration: Network dissection in deep convolutional neural networks for computer vision [Zhou, Bau, Oliva, Torralba 2017].
- Lower layers of the network learn basic concepts, higher layers learn higher-level concepts.
- General thesis: Structure that is naturally present in concepts gets mirrored in its brain representation, in some way that facilitates both learning and recognition.
- Consistent with research on visual processing in mammalian brains [Hubel, Wiesel 1959].
- We approach this problem using our SNN-based methods.
- Initial project: Concept hierarchies, in which concepts are built from other concepts,...
- Example: Human consists of a body, a head, two legs,...; Head consists of eyes, nose, mouth, etc.

Introduction

• Simplifications:

- Ignore additional structure, e.g., arms and legs are positioned symmetrically.
- Our hierarchies are trees, always with the same height and same number of children.

• What we do:

- Define concept hierarchies, and a layered SNN model.
- Define what it means for a layered SNN to recognize a particular concept hierarchy; notion is robust to bounded noise.
- Define what it means to learn a concept hierarchy.
- Two algorithms (SNNs) that can learn to recognize concept hierarchies (with/without noise during learning).
- A lower bound showing that, in order to recognize concepts with hierarchical depth ℓ , an SNN must have at least ℓ layers.

2. Data model: Concept hierarchies

- A concept hierarchy *C* consists of a set *C* of concepts arranged into a forest.
- Assume uniform degree k.
- *l_{max}* levels.
- For concept $c \in C_{\ell}$, define children(c), descendants(c).
- leaves(c) = level 0 descendants of c.

Data model

• Concepts are chosen from a universal set D, which is partitioned into ℓ_{max} levels $D_0, D_1, ...$

• $n = |D_0|$

• Support:

- Fix a concept hierarchy C.
- For ratio r ∈ [0,1], recursively define which concepts are r-supported by a particular set B of level 0 concepts:

•
$$B_0 = B$$
.

- $B_1 =$ level 1 concepts with at least an *r*-fraction of their children in B_0 .
- B_l = level *l* concepts with at least an *r*-fraction of their children in B_{l-1} .

3. Network model

- Feed-forward, layered network N.
- Each layer contains *n* neurons.
- l'_{max} layers.

- All-to-all connections between consecutive levels.
- Assume each level 0 concept has a unique representation neuron rep(c) in layer 0.
- Neuron states:
 - All neurons have a firing status flag in {0,1}, indicating whether the neuron is currently firing.
 - Higher layer neurons also keep track of incoming weights, represented by n-vectors of reals in the range [0,1].
 - Higher layer neurons record whether they are engaged in learning.

Network model

• Activation function: We use a deterministic threshold τ , rather than stochastic (for simplicity).

• Learning rule: Oja's rule for weight updates [Oja 1982], for a neuron *u* that is currently engaged:

 $w(t) = w(t-1) + \eta z(x(t-1) - z w(t-1))$, where

- η is the learning rate,
- x(t-1) is the vector of input firing status values,
- z is the dot product of x(t-1) and w(t-1), which is the incoming potential at u for round t.
- Network operation: At each round *t*, first calculate incoming potential, then use activation function to determine the new firing status, then (if engaged) use Oja to update the weights.

Learning Hierarchically-Structured Concepts

- 1. Introduction
- 2. Data Model
- 3. Network Model
- 4. Problem Statements
- 5. Algorithms for Recognition and Noise-Free Learning
- 6. Extension: Noisy Learning
- 7. Lower Bounds
- 8. Conclusions

4. Problem statements

- Two problems:
 - Recognizing a concept hierarchy, and
 - Learning to recognize a concept hierarchy.
- We assume here that each item is represented by exactly one neuron (over-simplification, or abstraction).
- In both cases, we are interested in noisy recognition, captured formally using two fractions (ratios) $r_1, r_2 \in [0,1], r_1 \leq r_2$.
- For recognition, we assume a particular concept hierarchy, C.
- For learning, we must accommodate any arbitrary concept hierarchy C that might be presented as input.
- Presenting a set *B* of level 0 concepts: Allow exactly the reps(B) input neurons to fire (together).

The recognition problem

• Support (recall):

- Assumes a particular concept hierarchy C.
- For ratio r ∈ [0,1], recursively define which concepts are r-supported by a particular set B of level 0 concepts:
 - $B_0 = B$.
 - B_1 = level 1 concepts with at least an *r*-fraction of their children in B_0 .
 - B_l = level *l* concepts with at least an *r*-fraction of their children in B_{l-1} .
- For ratios $r_1, r_2, r_1 \le r_2$, network $N(r_1, r_2)$ -recognizes concept hierarchy *C* provided that for each concept $c \in C$:
 - Concept c has a unique representation neuron rep(c).
 - Suppose that a set *B* of level 0 concepts in *C* is presented. Then:
 - If c is r_2 -supported by B then rep(c) must fire.
 - if c is not r_1 -supported by B then rep(c) must not fire.

Learning problem

- The network *N* initially doesn't know which concept hierarchy it should learn; suppose in some execution, a particular concept hierarchy *C* is to be learned.
- To show a concept *c*, present all its leaves (level 0 descendants).
- Work bottom-up, showing each concept only after each of its children has been shown "sufficiently many" times (σ times, for a parameter σ).
- Otherwise, arbitrary interleaving is allowed.
- Then after not too long, the network N should reach a state from which it (r_1, r_2) -recognizes concept hierarchy C.
- We say that network $N(r_1, r_2)$ -learns concept hierarchy C.

Learning Hierarchically-Structured Concepts

- 1. Introduction
- 2. Data Model
- 3. Network Model
- 4. Problem Statements
- 5. Algorithms for Recognition and Noise-Free Learning
- 6. Extension: Noisy Learning
- 7. Lower Bounds
- 8. Conclusions

5. Algorithms

- Recognition algorithm, for a given concept hierarchy C:
- Embed the hierarchy in the layered network, each level at the same-numbered layer.

- Weights from reps of children to reps of parents can be 1, others 0 (for example).
- For a given r_1, r_2 , set threshold τ for every non-input neuron to $(r_1 + r_2)k/2$.
- This network solves the (r_1, r_2) -recognition problem for concept hierarchy *C*; time is ℓ_{max} .
- Assume the network starts in a "clean state", where weights are all 1 / $k^{\ell max}$.
- Threshold $\tau = (r_1 + r_2)\sqrt{k}/2$.
- Use a bottom-up discipline for showing the concepts in C:
 - To show a concept *c*, present all its leaves (level 0 descendants).
 - Work bottom-up in the concept hierarchy, showing each concept only after each of its children has been shown σ times, for a parameter σ .
 - Otherwise, arbitrary interleaving is allowed.
- Given these inputs and starting conditions, network just executes normally, following the given activation function and Oja's learning rule.
- Results in learning the concepts in *C* bottom-up.

• Level *l* concepts acquire representations in layer *l*; the algorithm embeds the hierarchy in the network graph, level by level.

- When trying to learn a level *l* concept *c*:
 - We assume (inductively) that each of c's children has already acquired a rep in layer l 1, which has already learned to fire in response to presentation of its leaves.
 - So presenting all the *reps* of all the leaves of *c* together results in firing of the *reps* of all these children.
 - These induce potential at layer *l* neurons.

- When trying to learn a level *l* concept *c*:
 - We assume (inductively) that each of *c*'s children has already acquired a *rep* in layer *l* − 1, which has already learned to fire in response to presentation of its leaves.
 - So presenting all the *reps* of all the leaves of *c* together results in firing of the *reps* of all these children.
 - These induce potential at layer *l* neurons.
 - We use a Winner-Take-All module to select one neuron u (the one with the highest potential), and put it into "engaged" mode for learning.
 - Neuron *u* learns using Oja's rule: Incoming edges from *reps* of *c*'s children get strengthened, others get weakened.
 - Even one step ensures that the same *u* will later be selected for the same concept *c*, and *u* will not later be selected for any other concept.
 - After c has been shown σ times, u will have learned to fire in response to presentation of all its leaves, and more strongly, to a sufficient fraction of the leaves.

Theorem 1: Let *N* be the network described above.

Assume that the learning rate η is $\frac{1}{4k}$.

Let $r_1, r_2 \in [0,1], r_1 < r_2$.

Let $\epsilon = (r_2 - r_1) / (r_1 + r_2)$.

Let C be any concept hierarchy with max level \leq max layer in *N*.

Suppose that the concepts in C are shown according to a σ -bottom-up presentation schedule, where

 $\sigma = O((1/\eta k)(\ell_{max} \log(k) + 1/\epsilon) + b \log(k)).$ Then $N(r_1, r_2)$ -learns C.

- Proof: A series of lemmas analyzing the step-by-step changes caused by using Oja's rule.
- The first term bounds the time to increase the weights of the needed edges to something in the range $[1/(1+\epsilon)\sqrt{k}, 1/\sqrt{k}]$. That is, to roughly $1/\sqrt{k}$.
- The second term bounds the time to decrease the weights of the unwanted edges to at most 1 / k^{lmax+b} .

6. Extension: Noisy Learning

- Bottom-up discipline for the noise-free learning algorithm:
 - To show a concept *c*, present all its leaves (level 0 descendants).
 - Work bottom-up in the concept hierarchy, showing each concept only after each of its children has been shown σ times, for a parameter σ .
 - Otherwise, arbitrary interleaving is allowed.
- Now relax this discipline so that not all the children need to be shown all the time.
- To show a concept *c*, determine a random size *pk* subset of its children, and for each, a random size *pk* subset of their children,...(recursively).
- Present the resulting set B of leaves of c.
- Work bottom-up as before, showing each concept only after each of its children has been shown σ times, for parameter σ .

Noisy Learning

- To show a concept *c*, determine a random size *pk* subset of its children, and for each, a random size *pk* subset of their children,...(recursively).
- Present the resulting set *B* of leaves of *c*.
- Work bottom-up as before, showing each concept only after each of its children has been shown σ times, for parameter σ .

Theorem 2: Analogous to Theorem 1, but with a larger value of σ . Let *N* be the network described above, with a different constraint on the learning rate η .

Then $N(r_1, r_2)$ -learns C, with high probability.

Proof: Similar to Theorem 1, but it takes a bit longer to learn each concept, and the learning occurs only with high probability.

Learning Hierarchically-Structured Concepts

- 1. Introduction
- 2. Data Model
- 3. Network Model
- 4. Problem Statements
- 5. Algorithms for Recognition and Noise-Free Learning
- 6. Extension: Noisy Learning
- 7. Lower Bounds
- 8. Conclusions

7. Lower bounds

Theorem 3: If network $N(r_1, r_2)$ -recognizes concept hierarchy C with $r_2^2 < 2r_1 - r_1^2$, then the number of layers in N must be \geq number of levels in C.

For example, consider $r_1 = \frac{1}{3}$, $r_2 = \frac{2}{3}$.

Proof idea: If there are too few layers, some child relationships aren't explicitly represented. Causes confusion between cases where the network is supposed to recognize a concept and cases where it is required not to.

Similar-sounding lower bounds on number of levels have been proved [Mhaskar, Liao, Poggio 2016], [Telgarsky 2016], but using very different methods (function approximation theory).

Proof: Uses induction on the number of levels in *C*; first consider the base case.

Theorem 4: Suppose that concept hierarchy *C* has max level 2 and network *N* has max layer 1. Suppose that $r_2^2 < 2r_1 - r_1^2$. Then *N* does not (r_1, r_2) -recognize concept hierarchy *C*.

0

Proof: Suppose it does, and consider any level 2 concept *c*. Reps for *c* and its children must be in layer 1, so rep(c) cannot be influenced by reps of *c*'s children, but only its grandchildren. For each child *b* of *c*, define W(b) = total weight of all edges to rep(c) from *reps* of grandchildren of *c* that are children of *b*. Define W = total weight of all edges to rep(c) from *reps* of grandchildren of *c*, = $\Sigma_b W(b)$.

For each child *b* of *c*, define W(b) = total weight of all edges to rep(c) from grandchildren of *c* that are children of *b*. Define W = total weight of all edges to rep(c) from reps of grandchildren of $c = \Sigma_b W(b)$. Illustration of W(b):

W(b) = total weight of all edges to rep(c) from reps of grandchildren of c that are children of b.

W = total weight of all edges to rep(c) from reps of grandchildren of $c_{,} = \Sigma_{b} W(b)$.

Scenario A (rep(c) should fire): Choose $B = r_2$ fraction of *c*'s children with smallest W(b), and for each, its r_2 fraction of children with smallest weights.

Lemma: Total incoming potential to rep(c) is $\leq r_2^2 W$.

Scenario A (rep(c) should fire): Choose $B = r_2$ fraction of *c*'s children with smallest W(b), and for each, its r_2 fraction of children with smallest weights.

Lemma: Total incoming potential to c is $\leq r_2^2 W$.

Scenario *B* (rep(c) should not fire): Choose $B = r_1$ fraction of *c*'s children with largest W(b), and for each, all of its children. For each other child of *c*, chose r_1 fraction of children with largest weights.

Scenario A (rep(c) should fire): Choose $B = r_2$ fraction of *c*'s children with smallest W(b), and for each, its r_2 fraction of children with smallest weights.

Lemma: Total incoming potential to c is $\leq r_2^2 W$.

Scenario *B* (rep(c) should not fire): Choose $B = r_1$ fraction of *c*'s children with largest W(b), and for each, all of its children. For each other child of *c*, chose r_1 fraction of children with largest weights.

Lemma: Total incoming potential to c is $\geq (2 r_1 - r_1^2) W$. So firing threshold of rep(c) must be $\leq r_2^2 W$ and $\geq (2 r_1 - r_1^2) W$.

Contradiction since we have assumed that $r_2^2 < 2r_1 - r_1^2$.

Theorem 3 (Restated): Assume that the network *N* has fewer layers than the number of levels in the concept hierarchy *C*. Assume $r_2^2 < 2r_1 - r_1^2$. Then *N* does not (r_1, r_2) -recognize concept hierarchy *C*.

Note: Here we add a non-interference assumption: Consider any level ℓ and any set *B* of level ℓ concepts in *C*. For any $b \in B$, let N(b) be the set of neurons at layers $\leq \ell$ whose firing is triggered by showing *b*. Let *N* be the set of neurons at layers $\leq \ell$ whose firing is triggered by showing all the concepts in *B* together.

Then all the N(b) sets are disjoint, and $N = \bigcup_{b \in B} N(b)$.

Theorem 3: Assume that the network *N* has fewer layers than the number of levels in the concept hierarchy *C*. Assume $r_2^2 < 2r_1 - r_1^2$. Then *N* does not (r_1, r_2) -recognize concept hierarchy *C*.

Key Lemma: Suppose that network $N(r_1, r_2)$ -recognizes concept hierarchy C (with non-interference assumption). Then for every $\ell, 1 \leq \ell \leq \ell_{max}$, and for every level ℓ concept $c \in C$, rep(c) appears in a layer $\geq \ell$.

Proof of Lemma: By induction on ℓ . Inductive step: Assume a level ℓ concept c with $layer(rep(c)) \leq \ell - 1$.

Lemma: Suppose that network $N(r_1, r_2)$ -recognizes concept hierarchy C (with non-interference assumption).

Then for every $\ell, 1 \leq \ell \leq \ell_{max}$, and for every level ℓ concept $c \in C$, rep(c) appears in a layer $\geq \ell$.

Proof: Assume level ℓ concept c with $layer(rep(c)) \leq \ell - 1$.

By I.H., all reps of children(c) are at layers $\geq \ell - 1$, hence cannot influence the firing of rep(c).

So again, we focus on c's grandchildren.

Define W, and W(b) for each child b of c, as in the 1-layer proof, based on total weights incoming to rep(c) that are contributed by showing grandchildren of c.

But now the contributions are from whatever layer $\ell - 1$ neurons they cause to fire, not necessarily just *reps* of the grandchildren. Then argue similarly to before.

Proof: Define *W*, and W(b) for each child *b* of *c*, based on total weights incoming to rep(c) that are contributed by showing grandchildren of *c*.

reps(leaves(children(b)))

• Then argue similarly to before.

 Define Scenario A (*rep*(*c*) should fire even though few grandchildren are included), and Scenario B (*rep*(*c*) should not fire even though many grandchildren are included).

- When we include a grandchild, present all its leaves.
- Reach the same contradiction as before, based on assuming $r_2^2 < 2r_1 r_1^2$.
- Non-interference allows us to simply sum weights to account for contributions from multiple grandchildren.

Learning Hierarchically-Structured Concepts

- 1. Introduction
- 2. Data Model
- 3. Network Model
- 4. Problem Statements
- 5. Algorithms for Recognition and Noise-Free Learning
- 6. Extension: Noisy Learning
- 7. Lower Bounds
- 8. Conclusions

8. Conclusions

• Summary:

- Hierarchically-structured concepts, based (initially) on a simple tree structure.
- Noise-tolerant recognition problem.
- Learning problem, leading to noise-tolerant recognition.
- Learning algorithms, with/without noise during the learning process.
- Lower bounds on number of layers, for noise-tolerant recognition.

• Discussion:

- Gives some insight into how concepts with certain types of logical structure can be learned, and into limitations on networks that recognize such concepts.
- Very simplified data model, needs many extensions.

Future Work on Learning Structured Concepts

- Different kinds of concept hierarchies, esp. with some overlap between child sets (DAG instead of forest).
- Different network structures, e.g., with sparse random connections instead of all-to-all, or with feedback edges.
- Learning different kinds of structure (logical relationships, geometric, physical).
- Different forms of representation (coding), not just single neurons.
- Strengthen connections with biology.

Other Future Work on Brain Algorithms

- Models
- Algorithms, for decision problems, neural representation problems, recognition, learning and recall.
- Representation of various kinds of concepts in the brain.
- Issues:
 - Role of randomness, inhibition.
 - Modularity.
 - Noise-tolerance, fault-tolerance.
 - To what extent can network mechanisms be learned, vs. pre-designed or evolved?

