
LEARNING HIERARCHICALLY
STRUCTURED CONCEPTS

Nancy Lynch
Spring, 2020 Brain Algorithms
Reading Group
Meeting 11, May 1, 2020

Joint work with Frederik
Mallmann-Trenn

An Algorithmic Theory of Brain Networks
• We use a distributed algorithms approach to study abstract

versions of problems solved by real brains: Decision-making,
attention, encoding and representation, recognition, learning.

• Define problems as probabilistic functions from input firing
sequences to output firing sequences.

• Define abstract algorithms, based on those
that occur in brains, modeled as discrete,
stochastic Spiking Neural Networks (SNNs).

• Prove that the algorithms solve the problems.
• Analyze algorithms: network size,

convergence time, energy usage.
• Prove corresponding lower bounds.

• General questions:
• How do results depend on model assumptions (about timing, memory,

probability)?
• How robust are algorithms (to noise, errors, changes)?
• What can be learned, what must be pre-designed?
• Describe algorithms using composition, abstraction?

An Algorithmic Theory of Brain Networks

• Work should lead to:
• New understanding of brain behavior.
• Opportunities for work in two communities:

• Theoretical computer scientists can study abstract
problems, prove upper and lower bounds.

• Neuroscientists can model real brain mechanisms,
validate models with experiments.

Our Relevant Prior Work
1. Model: Stochastic Spiking Neural Networks
2. Winner-Take-All algorithms and lower bounds
3. Similarity testing, compression, short-term

memory,…

1. Model: Stochastic Spiking Neural
Networks
• Nancy Lynch, Cameron Musco, Merav Parter. Computational

tradeoffs in biological neural networks: Self-stabilizing Winner-
Take-All networks. ITCS 2017. ArXiv 2019.

• 𝑣𝑡 = 1 if and only if neuron 𝑣 spikes at time 𝑡.

• 𝑝𝑝𝑡 𝑣, 𝑡 = Σ𝑢 𝑢𝑡−1 𝑤(𝑢, 𝑣) – 𝑏(𝑣)

• Pr [𝑣𝑡 = 1] = 1/(1 + 𝑒−𝑝𝑝𝑡(𝑣,𝑡))

𝑣𝑡 = 1 𝑣t+1 = 1 𝑣t+2 = 0 𝑣t+3 = 1

𝑢1

𝑣

… 𝑢2 𝑢3

𝑤(𝑢1, 𝑣)

1
𝑝(𝑣, 𝑡)

𝑝𝑝𝑡(𝑣, 𝑡)

1/2

Stochastic Spiking Neural Networks
• We usually assume that neurons are strictly inhibitory or

strictly excitatory, i.e., 𝑤 𝑢, 𝑣 ≥ 0 for all 𝑣 or 𝑤 𝑢, 𝑣 ≤ 0 for
all 𝑣.

• We usually ignore other biological features: Refractory

period, spike propagation delay, memory, noise on
synapses,…

• Some can be simulated in our model.
• We also sometimes augment the model.

+

𝑢

+

𝑢
-

- -
+

Neural Network Model
• A weighted directed graph, nodes represent neurons, edges

represent synapses, weights represent synaptic strength.
• Regard 𝑤𝑒𝑤𝑤𝑤𝑡 = 0 as absence of edge, 𝑤𝑒𝑤𝑤𝑤𝑡 > 0 as

excitatory, 𝑤𝑒𝑤𝑤𝑤𝑡 < 0 as inhibitory.
𝑢 𝑣

Neural Network Model
• Neurons are either input neurons 𝑋, output neurons 𝑌, or

auxiliary neurons 𝐴.
• Input and output neurons are excitatory.
• Auxiliary neurons may be either excitatory or inhibitory.

𝑦1 𝑦2 𝑦3 … 𝑦𝑚

𝑥1 …

𝑎1

𝑥2 𝑥3 𝑥𝑛

𝑎2 𝑎𝑙

Network Dynamics
• Configuration 𝐶: Assigns a firing state,

0 or 1, to each neuron; 𝐶(𝑢) = 1
means it’s firing and = 0 means it’s not.

• Execution 𝛼 = 𝐶0,𝐶1,𝐶2, …, a sequence of configurations.
• 𝑢𝑡 = 𝐶𝑡(𝑢) denotes the firing state of neuron 𝑢 at time 𝑡.
• Input firing patterns are arbitrary.
• Initial firing patterns for non-input (auxiliary and output)

neurons are part of the network definition.
• For every infinite input execution, the network produces a

probability distribution on infinite executions, by applying the
stochastic firing dynamics for all non-input neurons at all
rounds.

Composing Spiking Neural Networks
• Nancy Lynch, Cameron Musco. A Compositional Model for

Spiking Neural Networks. arXiv 1808.03884
• Idea: Combine networks that solve simple problems into larger

networks that solve more complex problems.
• E.g., consider two networks 𝒩1 and 𝒩2.
• Compatibility:

• Internal neurons of 𝒩1 cannot be neurons of 𝒩2, and vice versa.
• 𝒩1 and 𝒩2 have no common output neurons.
• May have common input neurons.
• Outputs of one may be inputs of the other.

• Composition rules:
• Neurons of 𝒩1 ∘ 𝒩2 = union of neurons of 𝒩1 and 𝒩2.
• Outputs of 𝒩1 ∘ 𝒩2 = union of outputs of 𝒩1 and 𝒩2.
• Likewise for internal neurons.
• Inputs: Inputs of 𝒩1 that aren’t outputs of 𝒩2, and vice versa.

• Attention network: Processes a sequence of inputs and

focuses attention on the “relevant” ones.
• Uses Winner-Take-All and

Filter sub-networks:

Composing Spiking Neural Networks

Winner-Take-
All

 𝑥1

𝑦1

𝑦1

𝑥3

𝑥2 𝑦2

𝑦3

Filter

 𝑤3 𝑤2 𝑤1

 𝑧3 𝑧2 𝑧1

Adding memory to neuron states
• Lili Su, C. J. Chang, Nancy Lynch. Spike-Based Winner-

Take-All Computation. Neural Computation 2019.
• Basic model: Neuron’s state at each time is a Boolean,

• 1 = firing, 0 = not firing.
• Augmented model with local memory:

• Useful in some algorithms, bio-realistic
• Neuron may remember its own 𝑚 previous firing states.

𝑢1

𝑣

… 𝑢2 𝑢3

𝑤(𝑢1, 𝑣)

• And/or its own incoming potentials based on
its incoming neighbors’ 𝑚 previous firing
states:

 𝑝𝑝𝑡 𝑣, 𝑡 = Σ𝑢 𝑢𝑡−1 𝑤(𝑢, 𝑣) – 𝑏(𝑣)
• General memory model, allows modeling of

accumulated potential, refractory periods.

Learning
• Lynch, Mallmann-Trenn. Learning Hierarchically

Structured Concepts, ArXiv 2019, 2020.
• We have added features to model changing edge weights,

as needed to support learning algorithms.
• New state component, a vector of incoming weights.
• Changes based on Oja’s rule, which incrementally adjusts

weights to correspond to firing patterns for incoming
neighbors.

2. Winner-Take-All
• Nancy Lynch, Cameron Musco, Merav Parter.

Computational Tradeoffs in Biological Neural Networks:
Self-Stabilizing Winner-Take-All Networks. ITCS 2017.

• Cameron Musco PhD thesis, Chapter 5
• New ArXiv version 2019.

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

WTA Circuit

Winner-Take-All: 𝑊𝑊𝐴 𝑛, 𝑡𝑐, 𝑡𝑠,δ
• 𝑛 fixed inputs, 𝑛 corresponding outputs.
• Starting from any state, with probability ≥ 1 − δ, network:

• Converges, within a (short) time 𝑡𝑐, to a single firing output, which
corresponds to a firing input, and then

• Remains stable for a (long) time 𝑡𝑠.

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

WTA Circuit

Simple Solution with Two Inhibitors

• Stability inhibitor 𝑎𝑠:
• Fires with high probability whenever ≥ 1 outputs fire.
• Prevents outputs that didn’t fire at time 𝑡 from firing at time 𝑡 + 1.

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

𝑎𝑠 𝑎𝑐 𝑏 = .5

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑏 = 1.5

• Convergence inhibitor 𝑎𝑐:
• Fires with high probability

whenever ≥ 2 outputs fire.
• Causes any output that

fires at time 𝑡 to fire at time
𝑡 + 1 with probability ~½.

• Main idea: Approximately half of currently-firing outputs
stop firing at each step.

• So with constant probability, there is some time 𝑡𝑐 ≤ log𝑛
such that exactly one output fires at time 𝑡𝑐 .

• Moreover, after time 𝑡c,
with high probability, this
selected output continues
to fire for a long time 𝑡𝑠.

• During this stable period,
only 𝑎𝑠 fires, preventing all
other outputs from firing.

Simple Solution with Two Inhibitors

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

𝑎𝑠 𝑎𝑐 𝑏 = .5

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑏 = 1.5

Main Theorem
• Theorem 1: Assume γ ≥ 𝑐 log (𝑛 𝑡𝑠 /δ). Then starting from

any state, with probability ≥ 1 − δ, the network converges,
within time 𝑡𝑐 ≈ 𝑐 log𝑛 log 1

𝛿
, to a single firing output

corresponding to a firing input, and remains stable for time 𝑡𝑠.

• Also:

• More than two inhibitors
can give faster
convergence.

• Can’t solve WTA much
faster with two inhibitors.

• Can’t solve it at all with
one inhibitor.

2γ

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

𝑎𝑠 𝑎𝑐
𝑏 = .5γ

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑏 = 1.5γ
 γ

𝑏 = 3γ

3γ

Extension to 𝑘-WTA
• Lili Su, CJ Chang, Nancy Lynch. Spike-Based Winner-

Take-All Computation. Neural Computation 2019.
• Now inputs fire, not at every round, but at different “rates”.
• Model input firing by independent Bernoulli processes.
• Problem: Choose the 𝑘 neurons with highest firing rates.

𝑥1 … 𝑥2 𝑥3 𝑥𝑛

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

 𝑘-WTA

Lower Bound
• Fix 𝑛, 𝑘.
• For a set 𝑅 of possible rates, define 𝐷(𝑅) to be a certain

statistic, capturing the “minimum distance” between
different rates in 𝑅 (related to KL-divergence).

• Fix an error probability 𝛿 ∈ 0,1 .

𝑥1 … 𝑥2 𝑥3 𝑥𝑛

𝑦1 … 𝑦2 𝑦3 𝑦𝑛

 𝑘-WTA

• Lower bound theorem: There is no
algorithm that solves 𝑘-WTA with
error probability 𝛿, for all rate
assignments from 𝑅, and that
converges within time

 1 − 𝛿 log 𝑘 𝑛 − 𝑘 − 1 𝐷 𝑅 .

• Simple algorithm, time 𝑂(log 1
𝛿

+ log 𝑘 𝑛 − 𝑘 𝐷 𝑅)

• Uses memory: 𝑚 previous firing states, where
𝑚 = Ω(log 1

𝛿
+ log 𝑘 𝑛 − 𝑘 𝐷 𝑅).

• Algorithm idea: Output neurons that fire excite themselves
(self-loops), inhibit others (clique).

Upper Bound

• Neuron 𝑣𝑖 fires at time 𝑡 exactly if either:
• It didn’t fire at time 𝑡 − 1, and its total incoming

potential, based on firings at times 𝑡 − 1, … ,
 𝑡 − 𝑚, is ≥ 𝑏 (its bias), or
• It did fire at time 𝑡 − 1, and its total incoming

potential, based on firings at times 𝑡 − 1, … ,
 𝑡 − 𝑚, is ≥ 1.

• Making this work to solve 𝑘-WTA requires fine-
tuning the weights and biases.

𝑥1 𝑥2 𝑥3

𝑦1

𝑦2

𝑦3

3. Similarity Testing, Compression, Clustering
• Nancy Lynch, Cameron Musco, Merav Parter. Neuro-

RAM Unit with Applications to Similarity Testing and
Compression in Spiking Neural Networks. DISC 2017.

?

0 1 0 1 0 1 0 1
𝑋1 𝑋2

𝑥2,1 𝑥2,2 𝑥2,3 𝑥2,𝑛 … 𝑥1,1 𝑥1.2 𝑥1,3 𝑥1,𝑛

Similarity Testing

𝑦

…

Short-Term Memory
• Yael Hitron, Nancy Lynch, Cameron Musco, Merav Parter. Random

Sketching, Clustering, and Short-Term Memory in Spiking Neural
Networks, ITCS 2020.

• 𝑛 input neurons, 𝑘 ≪ 𝑛 output neurons.
• An arbitrary set of 𝑘 distinct input firing patterns are presented, each for

“sufficiently long”.
• Network should learn a distinct “short code” for each input pattern: a

single output neuron should learn to fire in response to later presentation
of that same pattern.

𝑥1 …
0 1 1 0

𝑥2 𝑥3 𝑥𝑛

𝑦1 … 𝑦𝑘

Renaming

• Short-term memory: Coding remembered
by persistent firing, self-loops.

• Not long-term: no changes to network.
• Algorithm requires few internal neurons,

short training periods.
• Techniques: Random projection, WTA,

inhibition of already-assigned outputs.

Learning Hierarchically-Structured Concepts

1. Introduction
2. Data Model
3. Network Model
4. Problem Statements
5. Algorithms for Recognition and Noise-Free Learning
6. Extension: Noisy Learning
7. Lower Bounds
8. Conclusions

Nancy Lynch, Frederik Mallmann-Trenn. Learning
Hierarchically-Structured Concepts. arXiv:1909.04559v2,
February, 2020.

https://arxiv.org/abs/1909.04559v2

1. Introduction
• Q: How are concepts with structure represented in the brain? How

are they recognized? How are they learned?
• Inspiration: Network dissection in deep convolutional neural

networks for computer vision [Zhou, Bau, Oliva, Torralba 2017].
• Lower layers of the network learn basic concepts, higher layers

learn higher-level concepts.
• General thesis: Structure that is naturally present in concepts gets

mirrored in its brain representation, in some way that facilitates both
learning and recognition.

• Consistent with research on visual processing in mammalian brains
[Hubel, Wiesel 1959].

• We approach this problem using our SNN-based methods.
• Initial project: Concept hierarchies, in which concepts are built from

other concepts,…
• Example: Human consists of a body, a head, two legs,…; Head

consists of eyes, nose, mouth, etc.

Introduction
• Simplifications:

• Ignore additional structure, e.g., arms and legs are positioned
symmetrically.

• Our hierarchies are trees, always with the same height and same
number of children.

• What we do:
• Define concept hierarchies, and a layered SNN model.
• Define what it means for a layered SNN to recognize a particular

concept hierarchy; notion is robust to bounded noise.
• Define what it means to learn a concept hierarchy.
• Two algorithms (SNNs) that can learn to recognize concept

hierarchies (with/without noise during learning).
• A lower bound showing that, in order to recognize concepts with

hierarchical depth ℓ, an SNN must have at least ℓ layers.

2. Data model: Concept hierarchies
• A concept hierarchy C consists of a set 𝐶 of concepts

arranged into a forest.
• Assume uniform degree 𝑘.
• 𝑙𝑚𝑚𝑚 levels.
• For concept 𝑐 ∈ 𝐶ℓ, define 𝑐𝑤𝑤𝑙𝑐𝑐𝑒𝑛 𝑐 , 𝑐𝑒𝑠𝑐𝑒𝑛𝑐𝑎𝑛𝑡𝑠 𝑐 .
• 𝑙𝑒𝑎𝑣𝑒𝑠 𝑐 = level 0 descendants of 𝑐.

0

𝑙𝑚𝑚𝑚

Data model
• Concepts are chosen from a universal set 𝐷, which is

partitioned into ℓ𝑚𝑚𝑚 levels 𝐷0,𝐷1, …
• 𝑛 = |𝐷0|

• Support:

• Fix a concept hierarchy C.
• For ratio 𝑐 ∈ 0,1 , recursively define which concepts are 𝑐-

supported by a particular set 𝐵 of level 0 concepts:
• 𝐵0 = 𝐵.
• 𝐵1 = level 1 concepts with at least an 𝑐-fraction of their children in 𝐵0.
• 𝐵𝑙 = level 𝑙 concepts with at least an 𝑐-fraction of their children in 𝐵𝑙−1.

3. Network model
• Feed-forward, layered network N.
• Each layer contains 𝑛 neurons.
• 𝑙′𝑚𝑚𝑚 layers.
• All-to-all connections between consecutive levels.
• Assume each level 0 concept has a unique representation

neuron 𝑐𝑒𝑝(𝑐) in layer 0.
• Neuron states:

• All neurons have a firing status flag in 0,1 , indicating whether the
neuron is currently firing.

• Higher layer neurons also keep track of incoming weights,
represented by 𝑛-vectors of reals in the range 0,1 .

• Higher layer neurons record whether they are engaged in learning.

Etc.

Etc.

0

𝑙′𝑚𝑚𝑚

Network model
• Activation function: We use a

deterministic threshold 𝜏, rather
than stochastic (for simplicity).

Etc.

Etc.

0

𝑙′𝑚𝑚𝑚

• Learning rule: Oja’s rule for weight updates [Oja 1982], for a
neuron 𝑢 that is currently engaged:

 𝒘 𝑡 = 𝒘 𝑡 − 1 + 𝜂 𝑧(𝒙(𝑡 − 1) − 𝑧 𝒘(𝑡 − 1)) , where
• 𝜂 is the learning rate,
• 𝒙 𝑡 − 1 is the vector of input firing status values,
• 𝑧 is the dot product of 𝒙 𝑡 − 1 and 𝒘(𝑡 − 1), which is the incoming

potential at 𝑢 for round 𝑡.
• Network operation: At each round 𝑡, first calculate incoming

potential, then use activation function to determine the new
firing status, then (if engaged) use Oja to update the weights.

Learning Hierarchically-Structured Concepts

1. Introduction
2. Data Model
3. Network Model
4. Problem Statements
5. Algorithms for Recognition and Noise-Free Learning
6. Extension: Noisy Learning
7. Lower Bounds
8. Conclusions

4. Problem statements
• Two problems:

• Recognizing a concept hierarchy, and
• Learning to recognize a concept hierarchy.

• We assume here that each item is represented by exactly
one neuron (over-simplification, or abstraction).

• In both cases, we are interested in noisy recognition,
captured formally using two fractions (ratios) 𝑐1, 𝑐2 ∈
0,1 , 𝑐1 ≤ 𝑐2.

• For recognition, we assume a particular concept hierarchy,
C.

• For learning, we must accommodate any arbitrary concept
hierarchy C that might be presented as input.

• Presenting a set 𝐵 of level 0 concepts: Allow exactly the
𝑐𝑒𝑝𝑠(𝐵) input neurons to fire (together).

The recognition problem
• Support (recall):

• Assumes a particular concept hierarchy C.
• For ratio 𝑐 ∈ 0,1 , recursively define which concepts are 𝑐-supported

by a particular set 𝐵 of level 0 concepts:
• 𝐵0 = 𝐵.
• 𝐵1 = level 1 concepts with at least an 𝑐-fraction of their children in 𝐵0.
• 𝐵𝑙 = level 𝑙 concepts with at least an 𝑐-fraction of their children in 𝐵𝑙−1.

• For ratios 𝑐1, 𝑐2, 𝑐1 ≤ 𝑐2, network N 𝑐1, 𝑐2 -recognizes
concept hierarchy C provided that for each concept 𝑐 ∈ 𝐶:
• Concept 𝑐 has a unique representation neuron 𝑐𝑒𝑝 𝑐 .
• Suppose that a set 𝐵 of level 0 concepts in 𝐶 is presented. Then:

• If 𝑐 is 𝑐2-supported by 𝐵 then 𝑐𝑒𝑝(𝑐) must fire.
• if 𝑐 is not 𝑐1-supported by B then 𝑐𝑒𝑝(𝑐) must not fire.

Learning problem
• The network N initially doesn’t know which concept

hierarchy it should learn; suppose in some execution, a
particular concept hierarchy C is to be learned.

• To show a concept 𝑐, present all its leaves (level 0
descendants).

• Work bottom-up, showing each concept only after each of
its children has been shown “sufficiently many” times
(σ times, for a parameter σ).

• Otherwise, arbitrary interleaving is allowed.
• Then after not too long, the network N should reach a state

from which it 𝑐1, 𝑐2 -recognizes concept hierarchy C.
• We say that network N 𝑐1, 𝑐2 -learns concept hierarchy C.

Learning Hierarchically-Structured Concepts

1. Introduction
2. Data Model
3. Network Model
4. Problem Statements
5. Algorithms for Recognition and Noise-Free Learning
6. Extension: Noisy Learning
7. Lower Bounds
8. Conclusions

5. Algorithms
• Recognition algorithm, for a given concept hierarchy C:
• Embed the hierarchy in the layered network, each level at the

same-numbered layer.

• Weights from reps of children to reps of parents can be 1,

others 0 (for example).
• For a given 𝑐1, 𝑐2, set threshold τ for every non-input neuron

to 𝑐1 + 𝑐2 𝑘/2.
• This network solves the 𝑐1, 𝑐2 -recognition problem for

concept hierarchy C; time is ℓ𝑚𝑚𝑚.

Learning algorithm
• Assume the network starts in a “clean state”, where weights

are all 1 / 𝑘ℓ𝑚𝑚𝑚 .
• Threshold 𝜏 = (𝑐1 + 𝑐2)√𝑘 / 2.
• Use a bottom-up discipline for showing the concepts in C:

• To show a concept 𝑐, present all its leaves (level 0 descendants).
• Work bottom-up in the concept hierarchy, showing each concept only

after each of its children has been shown σ times, for a parameter σ.
• Otherwise, arbitrary interleaving is allowed.

• Given these inputs and starting conditions, network just
executes normally, following the given activation function and
Oja’s learning rule.

• Results in learning the concepts in C bottom-up.

Learning algorithm
• Level 𝑙 concepts acquire representations in layer 𝑙; the algorithm

embeds the hierarchy in the network graph, level by level.

• When trying to learn a level 𝑙 concept 𝑐:

• We assume (inductively) that each of 𝑐 s′ children has already acquired a
𝑐𝑒𝑝 in layer 𝑙 − 1, which has already learned to fire in response to
presentation of its leaves.

• So presenting all the 𝑐𝑒𝑝𝑠 of all the leaves of 𝑐 together results in firing of
the 𝑐𝑒𝑝𝑠 of all these children.

• These induce potential at layer 𝑙 neurons.

Learning algorithm
• When trying to learn a level 𝑙 concept 𝑐:

• We assume (inductively) that each of 𝑐 s′ children has already acquired
a 𝑐𝑒𝑝 in layer 𝑙 − 1, which has already learned to fire in response to
presentation of its leaves.

• So presenting all the 𝑐𝑒𝑝𝑠 of all the leaves of 𝑐 together results in firing
of the 𝑐𝑒𝑝𝑠 of all these children.

• These induce potential at layer 𝑙 neurons.
• We use a Winner-Take-All module to select one neuron 𝑢 (the one with

the highest potential), and put it into “engaged” mode for learning.
• Neuron 𝑢 learns using Oja’s rule: Incoming edges from 𝑐𝑒𝑝𝑠 of 𝑐’s

children get strengthened, others get weakened.
• Even one step ensures that the same 𝑢 will later be selected for the

same concept 𝑐, and 𝑢 will not later be selected for any other concept.
• After 𝑐 has been shown 𝜎 times, 𝑢 will have learned to fire in response

to presentation of all its leaves, and more strongly, to a sufficient
fraction of the leaves.

Learning algorithm
Theorem 1: Let N be the network described above.
Assume that the learning rate 𝜂 is 1

4𝑘
.

Let 𝑐1, 𝑐2 ∈ 0,1 , 𝑐1 < 𝑐2.
Let 𝜖 = 𝑐2 − 𝑐1 / (𝑐1+ 𝑐2).
Let C be any concept hierarchy with max level ≤ max layer in N.
Suppose that the concepts in C are shown according to a 𝜎–bottom-up
presentation schedule, where
 𝜎 = 𝑂((1 /𝜂 𝑘)(ℓ𝑚𝑚𝑚 log 𝑘 + 1/ϵ) + 𝑏 log 𝑘).
Then N 𝑐1, 𝑐2 -learns C.

• Proof: A series of lemmas analyzing the step-by-step changes caused by

using Oja’s rule.
• The first term bounds the time to increase the weights of the needed edges to

something in the range [1 / 1 + 𝜖 𝑘, 1 / 𝑘]. That is, to roughly 1 / 𝑘.
• The second term bounds the time to decrease the weights of the

unwanted edges to at most 1 / 𝑘𝑙𝑚𝑚𝑚+𝑏.

6. Extension: Noisy Learning
• Bottom-up discipline for the noise-free learning algorithm:

• To show a concept 𝑐, present all its leaves (level 0 descendants).
• Work bottom-up in the concept hierarchy, showing each concept only

after each of its children has been shown σ times, for a parameter σ.
• Otherwise, arbitrary interleaving is allowed.

• Now relax this discipline so that not all the children need to
be shown all the time.

• To show a concept 𝑐, determine a random size 𝑝𝑘 subset of
its children, and for each, a random size 𝑝𝑘 subset of their
children,…(recursively).

• Present the resulting set 𝐵 of leaves of 𝑐.
• Work bottom-up as before, showing each concept only after

each of its children has been shown σ times, for parameter σ.

Noisy Learning
• To show a concept 𝑐, determine a random size 𝑝𝑘 subset of

its children, and for each, a random size 𝑝𝑘 subset of their
children,…(recursively).

• Present the resulting set 𝐵 of leaves of 𝑐.
• Work bottom-up as before, showing each concept only after

each of its children has been shown σ times, for parameter σ.

Theorem 2: Analogous to Theorem 1, but with a larger value of 𝜎.
Let N be the network described above, with a different constraint on
the learning rate 𝜂.
Then N 𝑐1, 𝑐2 -learns C, with high probability.
Proof: Similar to Theorem 1, but it takes a bit longer to learn each
concept, and the learning occurs only with high probability.

Learning Hierarchically-Structured Concepts

1. Introduction
2. Data Model
3. Network Model
4. Problem Statements
5. Algorithms for Recognition and Noise-Free Learning
6. Extension: Noisy Learning
7. Lower Bounds
8. Conclusions

7. Lower bounds
Theorem 3: If network N (𝑐1, 𝑐2)-recognizes concept hierarchy C
with 𝑐22 < 2𝑐1 − 𝑐12, then the number of layers in N must be ≥
number of levels in C.
For example, consider 𝑐1 = 1

3
, 𝑐2 = 2

3
.

Proof idea: If there are too few layers, some child relationships
aren’t explicitly represented. Causes confusion between cases
where the network is supposed to recognize a concept and
cases where it is required not to.
Similar-sounding lower bounds on number of levels have been
proved [Mhaskar, Liao, Poggio 2016], [Telgarsky 2016], but using
very different methods (function approximation theory).

Proof: Uses induction on the number of levels in C; first consider
the base case.

Base case: 2 levels, 1 layer
Theorem 4: Suppose that concept hierarchy C has max level 2
and network N has max layer 1. Suppose that 𝑐22 < 2𝑐1 − 𝑐12.
Then N does not (𝑐1, 𝑐2)-recognize concept hierarchy C.

Proof: Suppose it does, and consider any level 2 concept 𝑐.
Reps for 𝑐 and its children must be in layer 1, so 𝑐𝑒𝑝(𝑐) cannot
be influenced by reps of 𝑐’s children, but only its grandchildren.
For each child 𝑏 of 𝑐, define 𝑊(𝑏) = total weight of all edges to
𝑐𝑒𝑝(𝑐) from 𝑐𝑒𝑝𝑠 of grandchildren of 𝑐 that are children of 𝑏.
Define 𝑊 = total weight of all edges to 𝑐𝑒𝑝(𝑐) from 𝑐𝑒𝑝𝑠 of
grandchildren of 𝑐, = Σ𝑏 𝑊 𝑏 .

Etc.

0

1
1

0

2

Base case: 2 levels, 1 layer
For each child 𝑏 of 𝑐, define 𝑊(𝑏) = total weight of all edges
to 𝑐𝑒𝑝(𝑐) from grandchildren of 𝑐 that are children of 𝑏.
Define 𝑊 = total weight of all edges to 𝑐𝑒𝑝(𝑐) from reps of
grandchildren of 𝑐, = Σ𝑏 𝑊 𝑏 .
Illustration of 𝑊(𝑏):

0

1
𝑐𝑒𝑝(𝑐)

𝑐𝑒𝑝 𝑏 ,
𝑏 ∈ 𝑐𝑤𝑤𝑙𝑐𝑐𝑒𝑛(𝑐)

𝑐𝑒𝑝𝑠(𝑐𝑤𝑤𝑙𝑐𝑐𝑒𝑛 𝑏)

Base case: 2 levels, 1 layer
𝑊(𝑏) = total weight of all edges to 𝑐𝑒𝑝(𝑐) from 𝑐𝑒𝑝𝑠 of
grandchildren of 𝑐 that are children of 𝑏.
𝑊 = total weight of all edges to 𝑐𝑒𝑝(𝑐) from 𝑐𝑒𝑝𝑠 of
grandchildren of 𝑐, = Σ𝑏 𝑊 𝑏 .
Scenario 𝐴 (𝑐𝑒𝑝(𝑐) should fire): Choose 𝐵 = 𝑐2 fraction of
𝑐’s children with smallest 𝑊(𝑏), and for each, its 𝑐2 fraction of
children with smallest weights.
Lemma: Total incoming potential to 𝑐𝑒𝑝(𝑐) is ≤ 𝑐22 𝑊.

1

0

2

0

1
𝑐𝑒𝑝(𝑐)

Base case: 2 levels, 1 layer
Scenario 𝐴 (𝑐𝑒𝑝(𝑐) should fire): Choose 𝐵 = 𝑐2 fraction of
𝑐’s children with smallest 𝑊(𝑏), and for each, its 𝑐2 fraction
of children with smallest weights.
Lemma: Total incoming potential to c is ≤ 𝑐22 𝑊.
Scenario 𝐵 (𝑐𝑒𝑝(𝑐) should not fire): Choose 𝐵 = 𝑐1 fraction
of 𝑐’s children with largest 𝑊(𝑏), and for each, all of its
children. For each other child of 𝑐, chose 𝑐1 fraction of
children with largest weights.
Lemma: Total incoming potential to 𝑐 is ≥ (2 𝑐1 − 𝑐12) 𝑊.

1

0

2

0

1
𝑐𝑒𝑝(𝑐)

Base case: 2 levels, 1 layer
Scenario 𝐴 (𝑐𝑒𝑝(𝑐) should fire): Choose 𝐵 = 𝑐2 fraction of
𝑐’s children with smallest 𝑊(𝑏), and for each, its 𝑐2 fraction
of children with smallest weights.
Lemma: Total incoming potential to c is ≤ 𝑐22 𝑊.
Scenario 𝐵 (𝑐𝑒𝑝(𝑐) should not fire): Choose 𝐵 = 𝑐1 fraction
of 𝑐’s children with largest 𝑊(𝑏), and for each, all of its
children. For each other child of 𝑐, chose 𝑐1 fraction of
children with largest weights.
Lemma: Total incoming potential to 𝑐 is ≥ (2 𝑐1 − 𝑐12) 𝑊.
So firing threshold of 𝑐𝑒𝑝(𝑐) must be ≤ 𝑐22 𝑊 and ≥ (2 𝑐1 −
𝑐12) 𝑊.
Contradiction since we have assumed that 𝑐22 < 2𝑐1 − 𝑐12.

General case
Theorem 3 (Restated): Assume that the network N has fewer
layers than the number of levels in the concept hierarchy C.
Assume 𝑐22 < 2𝑐1 − 𝑐12.
Then N does not (𝑐1, 𝑐2)-recognize concept hierarchy C.

Note: Here we add a non-interference assumption:
Consider any level ℓ and any set 𝐵 of level ℓ concepts in 𝐶.
For any 𝑏 ∈ 𝐵, let 𝑁(𝑏) be the set of neurons at layers ≤ ℓ
whose firing is triggered by showing 𝑏.
Let 𝑁 be the set of neurons at layers ≤ ℓ whose firing is
triggered by showing all the concepts in 𝐵 together.
Then all the 𝑁(𝑏) sets are disjoint, and 𝑁 = ⋃ 𝑁(𝑏)𝑏∈𝐵 .

General case
Theorem 3: Assume that the network N has fewer layers
than the number of levels in the concept hierarchy C.
Assume 𝑐22 < 2𝑐1 − 𝑐12.
Then N does not (𝑐1, 𝑐2)-recognize concept hierarchy C.

Key Lemma: Suppose that network N (𝑐1, 𝑐2)-recognizes
concept hierarchy C (with non-interference assumption).
Then for every ℓ, 1 ≤ ℓ ≤ ℓ𝑚𝑚𝑚 , and for every level ℓ
concept 𝑐 ∈ 𝐶, 𝑐𝑒𝑝 𝑐 appears in a layer ≥ ℓ.

Proof of Lemma: By induction on ℓ.
Inductive step: Assume a level ℓ concept 𝑐 with
𝑙𝑎𝑦𝑒𝑐(𝑐𝑒𝑝 𝑐) ≤ ℓ − 1.

General case
Lemma: Suppose that network N (𝑐1, 𝑐2)-recognizes concept
hierarchy C (with non-interference assumption).
Then for every ℓ, 1 ≤ ℓ ≤ ℓ𝑚𝑚𝑚, and for every level ℓ concept
𝑐 ∈ 𝐶, 𝑐𝑒𝑝 𝑐 appears in a layer ≥ ℓ.

Proof: Assume level ℓ concept 𝑐 with 𝑙𝑎𝑦𝑒𝑐(𝑐𝑒𝑝 𝑐) ≤ ℓ − 1.
By I.H., all reps of 𝑐𝑤𝑤𝑙𝑐𝑐𝑒𝑛(𝑐) are at layers ≥ ℓ − 1, hence cannot
influence the firing of 𝑐𝑒𝑝 𝑐 .
So again, we focus on 𝑐′s grandchildren.
Define 𝑊, and 𝑊(𝑏) for each child 𝑏 of 𝑐, as in the 1-layer proof,
based on total weights incoming to 𝑐𝑒𝑝 𝑐 that are contributed by
showing grandchildren of 𝑐.
But now the contributions are from whatever layer ℓ − 1 neurons
they cause to fire, not necessarily just 𝑐𝑒𝑝𝑠 of the grandchildren.
Then argue similarly to before.

General case
Proof: Define 𝑊, and 𝑊(𝑏) for each child 𝑏 of 𝑐, based on
total weights incoming to 𝑐𝑒𝑝 𝑐 that are contributed by
showing grandchildren of 𝑐.
• Illustration of 𝑊(𝑏):

• Then argue similarly to before.

ℓ − 2

ℓ − 1

𝑐𝑒𝑝(𝑐) 𝑐𝑒𝑝(𝑏)

Level ℓ − 2 neurons whose firing is triggered by
showing 𝑐𝑤𝑤𝑙𝑐𝑐𝑒𝑛 𝑏

0

𝑐𝑒𝑝𝑠(𝑙𝑒𝑎𝑣𝑒𝑠(𝑐𝑤𝑤𝑙𝑐𝑐𝑒𝑛(𝑏)))

General case
• Define Scenario A (𝑐𝑒𝑝(𝑐) should fire even though few

grandchildren are included), and Scenario B (𝑐𝑒𝑝(𝑐) should not
fire even though many grandchildren are included).

• When we include a grandchild, present all its leaves.
• Reach the same contradiction as before, based on assuming
𝑐22 < 2𝑐1 − 𝑐12.

• Non-interference allows us to simply sum weights to account for
contributions from multiple grandchildren.

ℓ − 1

ℓ − 2

ℓ

ℓ − 1

ℓ − 2

ℓ

Learning Hierarchically-Structured Concepts

1. Introduction
2. Data Model
3. Network Model
4. Problem Statements
5. Algorithms for Recognition and Noise-Free Learning
6. Extension: Noisy Learning
7. Lower Bounds
8. Conclusions

8. Conclusions
• Summary:

• Hierarchically-structured concepts, based (initially) on a simple tree
structure.

• Noise-tolerant recognition problem.
• Learning problem, leading to noise-tolerant recognition.
• Learning algorithms, with/without noise during the learning process.
• Lower bounds on number of layers, for noise-tolerant recognition.

• Discussion:
• Gives some insight into how concepts with certain types of logical

structure can be learned, and into limitations on networks that
recognize such concepts.

• Very simplified data model, needs many extensions.

Future Work on Learning Structured
Concepts

• Different kinds of concept hierarchies, esp. with some
overlap between child sets (DAG instead of forest).

• Different network structures, e.g., with sparse random
connections instead of all-to-all, or with feedback edges.

• Learning different kinds of structure (logical relationships,
geometric, physical).

• Different forms of representation (coding), not just single
neurons.

• Strengthen connections with biology.

Other Future Work on
Brain Algorithms

• Models
• Algorithms, for decision problems, neural

representation problems, recognition, learning
and recall.

• Representation of various kinds of concepts in
the brain.

• Issues:
• Role of randomness, inhibition.
• Modularity.
• Noise-tolerance, fault-tolerance.
• To what extent can network mechanisms be

learned, vs. pre-designed or evolved?
• …

	Learning hierarchically structured CONCepts
	An Algorithmic Theory of Brain Networks
	An Algorithmic Theory of Brain Networks
	Our Relevant Prior Work
	1. Model: Stochastic Spiking Neural Networks
	Stochastic Spiking Neural Networks
	Neural Network Model
	Neural Network Model
	Network Dynamics
	Composing Spiking Neural Networks
	�
	Adding memory to neuron states
	Learning
	2. Winner-Take-All
	Winner-Take-All: 𝑊𝑇𝐴 𝑛, 𝑡 𝑐 , 𝑡 𝑠 , δ
	Simple Solution with Two Inhibitors
	Simple Solution with Two Inhibitors
	Main Theorem
	Extension to 𝑘-WTA
	Lower Bound
	Upper Bound
	3. Similarity Testing, Compression, Clustering
	Short-Term Memory
	Learning Hierarchically-Structured Concepts
	1. Introduction
	Introduction
	2. Data model: Concept hierarchies
	Data model
	3. Network model
	Network model
	Learning Hierarchically-Structured Concepts
	4. Problem statements
	The recognition problem
	Learning problem
	Learning Hierarchically-Structured Concepts
	5. Algorithms
	Learning algorithm
	Learning algorithm
	Learning algorithm
	Learning algorithm
	6. Extension: Noisy Learning
	Noisy Learning
	Learning Hierarchically-Structured Concepts
	7. Lower bounds
	Base case: 2 levels, 1 layer
	Base case: 2 levels, 1 layer
	Base case: 2 levels, 1 layer
	Base case: 2 levels, 1 layer
	Base case: 2 levels, 1 layer
	General case
	General case
	General case
	General case
	General case
	Learning Hierarchically-Structured Concepts
	8. Conclusions
	Future Work on Learning Structured Concepts
	Other Future Work on Brain Algorithms

