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An Algorithmic Theory of Brain Networks 
• We use a distributed algorithms approach to study abstract 

versions of problems solved by real brains:  Decision-making, 
attention, encoding and representation, recognition, learning. 

• Define problems as probabilistic functions from input firing 
sequences to output firing sequences. 
 

 

• Define abstract algorithms, based on those 
that occur in brains, modeled as discrete, 
stochastic Spiking Neural Networks (SNNs). 

• Prove that the algorithms solve the problems. 
• Analyze algorithms:  network size, 

convergence time, energy usage. 
• Prove corresponding lower bounds. 



 

• General questions: 
• How do results depend on model assumptions (about timing, memory, 

probability)? 
• How robust are algorithms (to noise, errors, changes)? 
• What can be learned, what must be pre-designed? 
• Describe algorithms using composition, abstraction?  

An Algorithmic Theory of Brain Networks 

• Work should lead to: 
• New understanding of brain behavior. 
• Opportunities for work in two communities: 

• Theoretical computer scientists can study abstract 
problems, prove upper and lower bounds. 

• Neuroscientists can model real brain mechanisms, 
validate models with experiments. 



Our Relevant Prior Work 
1. Model:  Stochastic Spiking Neural Networks  
2. Winner-Take-All algorithms and lower bounds 
3. Similarity testing, compression, short-term 

memory,… 



1.  Model:  Stochastic Spiking Neural 
Networks 
• Nancy Lynch, Cameron Musco, Merav Parter.  Computational 

tradeoffs in biological neural networks:  Self-stabilizing Winner-
Take-All networks.  ITCS 2017.  ArXiv 2019.  

• 𝑣𝑡 = 1 if and only if neuron 𝑣 spikes at time 𝑡. 
 
 
 
 
 

 
• 𝑝𝑝𝑡 𝑣, 𝑡 = Σ𝑢 𝑢𝑡−1 𝑤(𝑢, 𝑣) –  𝑏(𝑣) 

 
• Pr [𝑣𝑡 = 1] =  1/(1 + 𝑒−𝑝𝑝𝑡(𝑣,𝑡)) 

 
 

𝑣𝑡  =  1 𝑣t+1 = 1 𝑣t+2 = 0 𝑣t+3 = 1 

𝑢1 

𝑣 

… 𝑢2 𝑢3 

𝑤(𝑢1, 𝑣) 

1 
𝑝(𝑣, 𝑡) 

𝑝𝑝𝑡(𝑣, 𝑡) 
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Stochastic Spiking Neural Networks 
• We usually assume that neurons are strictly inhibitory or 

strictly excitatory, i.e., 𝑤 𝑢, 𝑣 ≥  0 for all 𝑣 or 𝑤 𝑢, 𝑣 ≤  0 for 
all 𝑣. 
 
 
 

 
• We usually ignore other biological features:  Refractory 

period, spike propagation delay, memory, noise on 
synapses,… 

• Some can be simulated in our model. 
• We also sometimes augment the model. 
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Neural Network Model 
• A weighted directed graph, nodes represent neurons, edges 

represent synapses, weights represent synaptic strength. 
• Regard 𝑤𝑒𝑤𝑤𝑤𝑡 =  0 as absence of edge, 𝑤𝑒𝑤𝑤𝑤𝑡 >  0 as 

excitatory, 𝑤𝑒𝑤𝑤𝑤𝑡 <  0 as inhibitory. 
𝑢 𝑣 



Neural Network Model 
• Neurons are either input neurons 𝑋, output neurons 𝑌, or 

auxiliary neurons 𝐴. 
• Input and output neurons are excitatory. 
• Auxiliary neurons may be either excitatory or inhibitory. 

𝑦1 𝑦2 𝑦3 … 𝑦𝑚 

𝑥1 … 

𝑎1 

𝑥2 𝑥3 𝑥𝑛 

𝑎2 𝑎𝑙 



Network Dynamics 
• Configuration 𝐶:  Assigns a firing state, 

0 or 1, to each neuron; 𝐶(𝑢)  =  1 
means it’s firing and =  0 means it’s not. 

• Execution 𝛼 = 𝐶0,𝐶1,𝐶2, …, a sequence of configurations. 
• 𝑢𝑡 = 𝐶𝑡(𝑢) denotes the firing state of neuron 𝑢 at time 𝑡. 
• Input firing patterns are arbitrary. 
• Initial firing patterns for non-input (auxiliary and output) 

neurons are part of the network definition. 
• For every infinite input execution, the network produces a 

probability distribution on infinite executions, by applying the 
stochastic firing dynamics for all non-input neurons at all 
rounds. 



Composing Spiking Neural Networks 
• Nancy Lynch, Cameron Musco.  A Compositional Model for 

Spiking Neural Networks.  arXiv 1808.03884 
• Idea:  Combine networks that solve simple problems into larger 

networks that solve more complex problems. 
• E.g., consider two networks 𝒩1 and 𝒩2. 
• Compatibility: 

• Internal neurons of 𝒩1 cannot be neurons of 𝒩2, and vice versa. 
• 𝒩1 and 𝒩2 have no common output neurons. 
• May have common input neurons. 
• Outputs of one may be inputs of the other. 

• Composition rules: 
• Neurons of 𝒩1 ∘ 𝒩2 = union of neurons of 𝒩1 and 𝒩2. 
• Outputs of 𝒩1 ∘ 𝒩2 = union of outputs of 𝒩1 and 𝒩2. 
• Likewise for internal neurons. 
• Inputs:  Inputs of 𝒩1 that aren’t outputs of 𝒩2, and vice versa. 

 
 



 
 
• Attention network:  Processes a sequence of inputs and 

focuses attention on the “relevant” ones. 
• Uses Winner-Take-All and                                             

Filter sub-networks: 

Composing Spiking Neural Networks 

Winner-Take-
All 

 𝑥1 

𝑦1 

𝑦1 

𝑥3 

𝑥2 𝑦2 

𝑦3 

Filter 

 𝑤3  𝑤2  𝑤1 

 𝑧3  𝑧2  𝑧1 



Adding memory to neuron states 
• Lili Su, C. J. Chang, Nancy Lynch.  Spike-Based Winner-

Take-All Computation.  Neural Computation 2019. 
• Basic model: Neuron’s state at each time is a Boolean,  

• 1 = firing, 0 = not firing. 
• Augmented model with local memory:   

• Useful in some algorithms, bio-realistic 
• Neuron may remember its own 𝑚 previous firing states. 

 
𝑢1 

𝑣 

… 𝑢2 𝑢3 

𝑤(𝑢1, 𝑣) 

• And/or its own incoming potentials based on 
its incoming neighbors’ 𝑚 previous firing 
states:   

          𝑝𝑝𝑡 𝑣, 𝑡 = Σ𝑢 𝑢𝑡−1 𝑤(𝑢, 𝑣) –  𝑏(𝑣) 
• General memory model, allows modeling of 

accumulated potential, refractory periods. 



Learning 
• Lynch, Mallmann-Trenn.  Learning Hierarchically 

Structured Concepts, ArXiv 2019, 2020. 
• We have added features to model changing edge weights, 

as needed to support learning algorithms. 
• New state component, a vector of incoming weights. 
• Changes based on Oja’s rule, which incrementally adjusts 

weights to correspond to firing patterns for incoming 
neighbors. 



2.  Winner-Take-All 
• Nancy Lynch, Cameron Musco, Merav Parter.  

Computational Tradeoffs in Biological Neural Networks:  
Self-Stabilizing Winner-Take-All Networks.  ITCS 2017. 

• Cameron Musco PhD thesis, Chapter 5 
• New ArXiv version 2019. 

𝑥1 … 
0 1 1 0 

𝑥2 𝑥3 𝑥𝑛 

𝑦1 … 𝑦2 𝑦3 𝑦𝑛 

WTA Circuit 



Winner-Take-All:   𝑊𝑊𝐴 𝑛, 𝑡𝑐, 𝑡𝑠,δ  
• 𝑛 fixed inputs, 𝑛 corresponding outputs. 
• Starting from any state, with probability ≥ 1 −  δ,  network: 

• Converges, within a (short) time 𝑡𝑐, to a single firing output, which 
corresponds to a firing input, and then 

• Remains stable for a (long) time 𝑡𝑠. 

𝑥1 … 
0 1 1 0 

𝑥2 𝑥3 𝑥𝑛 

𝑦1 … 𝑦2 𝑦3 𝑦𝑛 

WTA Circuit 



Simple Solution with Two Inhibitors 

• Stability inhibitor 𝑎𝑠:   
• Fires with high probability whenever ≥ 1 outputs fire. 
• Prevents outputs that didn’t fire at time 𝑡 from firing at time 𝑡 + 1.  

 

𝑦1 … 𝑦2 𝑦3 𝑦𝑛 

𝑎𝑠 𝑎𝑐 𝑏 = .5 

𝑥1 … 
0 1 1 0 

𝑥2 𝑥3 𝑥𝑛 

𝑏 = 1.5 

• Convergence inhibitor 𝑎𝑐: 
• Fires with high probability 

whenever ≥ 2 outputs fire. 
• Causes any output that 

fires at time 𝑡 to fire at time 
𝑡 + 1 with probability ~½. 

 



• Main idea:  Approximately half of currently-firing outputs 
stop firing at each step. 

• So with constant probability, there is some time 𝑡𝑐  ≤ log𝑛     
such that exactly one output fires at time 𝑡𝑐 . 

• Moreover, after time 𝑡c, 
with high probability, this 
selected output continues 
to fire for a long time 𝑡𝑠.   

• During this stable period, 
only 𝑎𝑠 fires, preventing all 
other outputs from firing. 

Simple Solution with Two Inhibitors 

𝑦1 … 𝑦2 𝑦3 𝑦𝑛 

𝑎𝑠 𝑎𝑐 𝑏 = .5 

𝑥1 … 
0 1 1 0 

𝑥2 𝑥3 𝑥𝑛 

𝑏 = 1.5 



Main Theorem 
• Theorem 1:  Assume γ ≥  𝑐 log (𝑛 𝑡𝑠 /δ).  Then starting from 

any state, with probability ≥ 1 −  δ,  the network converges, 
within time 𝑡𝑐 ≈ 𝑐 log𝑛 log 1

𝛿
, to a single firing output 

corresponding to a firing input, and remains stable for time 𝑡𝑠. 
 

 
• Also: 

• More than two inhibitors 
can give faster 
convergence. 

• Can’t solve WTA much 
faster with two inhibitors. 

• Can’t solve it at all with 
one inhibitor. 

2γ 
 

𝑦1 … 𝑦2 𝑦3 𝑦𝑛 

𝑎𝑠 𝑎𝑐 
𝑏 = .5γ 

 

𝑥1 … 
0 1 1 0 

𝑥2 𝑥3 𝑥𝑛 

𝑏 = 1.5γ 
 γ 

𝑏 = 3γ 
 

3γ 



Extension to 𝑘-WTA 
• Lili Su, CJ Chang, Nancy Lynch.  Spike-Based Winner-

Take-All Computation.  Neural Computation 2019. 
• Now inputs fire, not at every round, but at different “rates”. 
• Model input firing by independent Bernoulli processes. 
• Problem:  Choose the 𝑘 neurons with highest firing rates. 
 

𝑥1 … 𝑥2 𝑥3 𝑥𝑛 

𝑦1 … 𝑦2 𝑦3 𝑦𝑛 

   𝑘-WTA 



Lower Bound 
• Fix 𝑛, 𝑘. 
• For a set 𝑅 of possible rates, define 𝐷(𝑅) to be a certain 

statistic, capturing the “minimum distance” between 
different rates in 𝑅 (related to KL-divergence). 

• Fix an error probability 𝛿 ∈ 0,1 .  

𝑥1 … 𝑥2 𝑥3 𝑥𝑛 

𝑦1 … 𝑦2 𝑦3 𝑦𝑛 

   𝑘-WTA 

• Lower bound theorem:  There is no 
algorithm that solves 𝑘-WTA with 
error probability 𝛿, for all rate 
assignments from 𝑅, and that 
converges within time   

  1 − 𝛿 log 𝑘 𝑛 − 𝑘 − 1 𝐷 𝑅 .  



• Simple algorithm, time 𝑂(log 1
𝛿

+ log 𝑘 𝑛 − 𝑘 𝐷 𝑅 ) 

• Uses memory:  𝑚 previous firing states, where  
𝑚 = Ω(log 1

𝛿
+ log 𝑘 𝑛 − 𝑘 𝐷 𝑅 ). 

• Algorithm idea: Output neurons that fire excite themselves 
(self-loops), inhibit others (clique). 
 

Upper  Bound 

• Neuron 𝑣𝑖 fires at time 𝑡 exactly if either: 
• It didn’t fire at time 𝑡 − 1, and its total incoming 

potential, based on firings at times 𝑡 − 1, … , 
   𝑡 − 𝑚, is ≥ 𝑏 (its bias), or 
• It did fire at time 𝑡 − 1, and its total incoming 

potential, based on firings at times 𝑡 − 1, … , 
   𝑡 − 𝑚, is ≥ 1.  

• Making this work to solve 𝑘-WTA requires fine-
tuning the weights and biases. 

𝑥1 𝑥2 𝑥3 

𝑦1 

𝑦2 

𝑦3 



3. Similarity Testing, Compression, Clustering 
• Nancy Lynch, Cameron Musco, Merav Parter.  Neuro-

RAM Unit with Applications to Similarity Testing and 
Compression in Spiking Neural Networks.  DISC 2017. 
 

? 

0 1 0 1 0 1 0 1 
𝑋1 𝑋2 

𝑥2,1 𝑥2,2 𝑥2,3 𝑥2,𝑛 … 𝑥1,1 𝑥1.2 𝑥1,3 𝑥1,𝑛 

Similarity Testing 

𝑦 

… 



Short-Term Memory 
• Yael Hitron, Nancy Lynch, Cameron Musco, Merav Parter.  Random 

Sketching, Clustering, and Short-Term Memory in Spiking Neural 
Networks, ITCS 2020. 

•  𝑛 input neurons, 𝑘 ≪ 𝑛 output neurons. 
• An arbitrary set of 𝑘 distinct input firing patterns are presented, each for 

“sufficiently long”. 
• Network should learn a distinct “short code” for each input pattern:  a 

single output neuron should learn to fire in response to later presentation 
of that same pattern. 

𝑥1 … 
0 1 1 0 

𝑥2 𝑥3 𝑥𝑛 

𝑦1 … 𝑦𝑘 

Renaming 

• Short-term memory:  Coding remembered 
by persistent firing, self-loops. 

• Not long-term:  no changes to network. 
• Algorithm requires few internal neurons, 

short training periods. 
• Techniques:  Random projection, WTA, 

inhibition of already-assigned outputs. 



Learning Hierarchically-Structured Concepts 

1. Introduction  
2. Data Model 
3. Network Model 
4. Problem Statements 
5. Algorithms for Recognition and Noise-Free Learning 
6. Extension:  Noisy Learning 
7. Lower Bounds 
8. Conclusions 

Nancy Lynch, Frederik Mallmann-Trenn.  Learning 
Hierarchically-Structured Concepts.  arXiv:1909.04559v2, 
February, 2020.  

https://arxiv.org/abs/1909.04559v2


1.  Introduction 
• Q:  How are concepts with structure represented in the brain?  How 

are they recognized?  How are they learned? 
• Inspiration:  Network dissection in deep convolutional neural 

networks for computer vision [Zhou, Bau, Oliva, Torralba 2017]. 
• Lower layers of the network learn basic concepts, higher layers 

learn higher-level concepts. 
• General thesis:  Structure that is naturally present in concepts gets 

mirrored in its brain representation, in some way that facilitates both 
learning and recognition. 

• Consistent with research on visual processing in mammalian brains 
[Hubel, Wiesel 1959]. 

• We approach this problem using our SNN-based methods. 
• Initial project:  Concept hierarchies, in which concepts are built from 

other concepts,… 
• Example:  Human consists of a body, a head, two legs,…; Head 

consists of eyes, nose, mouth, etc. 



Introduction 
• Simplifications: 

• Ignore additional structure, e.g., arms and legs are positioned 
symmetrically. 

• Our hierarchies are trees, always with the same height and same 
number of children. 
 

• What we do: 
• Define concept hierarchies, and a layered SNN model. 
• Define what it means for a layered SNN to recognize a particular 

concept hierarchy; notion is robust to bounded noise. 
• Define what it means to learn a concept hierarchy. 
• Two algorithms (SNNs) that can learn to recognize concept 

hierarchies (with/without noise during learning). 
• A lower bound showing that, in order to recognize concepts with 

hierarchical depth ℓ, an SNN must have at least ℓ layers. 
 
 



2. Data model:  Concept hierarchies 
• A concept hierarchy C consists of a set 𝐶 of concepts 

arranged into a forest. 
• Assume uniform degree 𝑘. 
• 𝑙𝑚𝑚𝑚 levels. 
• For concept 𝑐 ∈ 𝐶ℓ, define 𝑐𝑤𝑤𝑙𝑐𝑐𝑒𝑛 𝑐 , 𝑐𝑒𝑠𝑐𝑒𝑛𝑐𝑎𝑛𝑡𝑠 𝑐 . 
• 𝑙𝑒𝑎𝑣𝑒𝑠 𝑐 = level 0 descendants of 𝑐. 

 
 
 

0 

𝑙𝑚𝑚𝑚 
 



Data model 
• Concepts are chosen from a universal set 𝐷, which is 

partitioned into ℓ𝑚𝑚𝑚 levels 𝐷0,𝐷1, … 
• 𝑛 = |𝐷0| 

 
• Support: 

• Fix a concept hierarchy C. 
• For ratio 𝑐 ∈ 0,1 , recursively define which concepts are 𝑐-

supported by a particular set 𝐵 of level 0 concepts: 
• 𝐵0 = 𝐵. 
• 𝐵1 = level 1 concepts with at least an 𝑐-fraction of their children in 𝐵0. 
• 𝐵𝑙  = level 𝑙 concepts with at least an 𝑐-fraction of their children in 𝐵𝑙−1. 

 



3. Network model 
• Feed-forward, layered network N. 
• Each layer contains 𝑛 neurons. 
• 𝑙′𝑚𝑚𝑚 layers. 
• All-to-all connections between consecutive levels. 
• Assume each level 0 concept has a unique representation 

neuron 𝑐𝑒𝑝(𝑐) in layer 0. 
• Neuron states:   

• All neurons have a firing status flag in 0,1 , indicating whether the 
neuron is currently firing. 

• Higher layer neurons also keep track of incoming weights, 
represented by 𝑛-vectors of reals in the range 0,1 . 

• Higher layer neurons record whether they are engaged in learning. 
 
 

Etc. 

Etc. 

0 

𝑙′𝑚𝑚𝑚 
 



Network model 
• Activation function:  We use a 

deterministic threshold 𝜏, rather 
than stochastic (for simplicity). 

Etc. 

Etc. 

0 

𝑙′𝑚𝑚𝑚 
 

• Learning rule:  Oja’s rule for weight updates [Oja 1982], for a 
neuron 𝑢 that is currently engaged:  

            𝒘 𝑡 = 𝒘 𝑡 − 1 + 𝜂 𝑧(𝒙(𝑡 − 1) − 𝑧 𝒘(𝑡 − 1)) , where 
• 𝜂 is the learning rate, 
• 𝒙 𝑡 − 1  is the vector of input firing status values, 
• 𝑧 is the dot product of 𝒙 𝑡 − 1  and 𝒘(𝑡 − 1), which is the incoming 

potential at 𝑢 for round 𝑡. 
• Network operation:  At each round 𝑡, first calculate incoming 

potential, then use activation function to determine the new 
firing status, then (if engaged) use Oja to update the weights. 



Learning Hierarchically-Structured Concepts 

1. Introduction  
2. Data Model 
3. Network Model 
4. Problem Statements 
5. Algorithms for Recognition and Noise-Free Learning 
6. Extension:  Noisy Learning 
7. Lower Bounds 
8. Conclusions 



4. Problem statements 
• Two problems: 

• Recognizing a concept hierarchy, and  
• Learning to recognize a concept hierarchy. 

• We assume here that each item is represented by exactly 
one neuron (over-simplification, or abstraction). 

• In both cases, we  are interested in noisy recognition, 
captured formally using two fractions (ratios) 𝑐1, 𝑐2 ∈ 
0,1 , 𝑐1 ≤ 𝑐2. 

• For recognition, we assume a particular concept hierarchy, 
C. 

• For learning, we must accommodate any arbitrary concept 
hierarchy C that might be presented as input. 

• Presenting a set 𝐵 of level 0 concepts:  Allow exactly the 
𝑐𝑒𝑝𝑠(𝐵) input neurons to fire (together). 

 
 



The recognition problem 
• Support (recall): 

• Assumes a particular concept hierarchy C. 
• For ratio 𝑐 ∈ 0,1 , recursively define which concepts are 𝑐-supported 

by a particular set 𝐵 of level 0 concepts: 
• 𝐵0 = 𝐵. 
• 𝐵1 = level 1 concepts with at least an 𝑐-fraction of their children in 𝐵0. 
• 𝐵𝑙  = level 𝑙 concepts with at least an 𝑐-fraction of their children in 𝐵𝑙−1. 

• For ratios 𝑐1, 𝑐2, 𝑐1 ≤ 𝑐2, network N 𝑐1, 𝑐2 -recognizes 
concept hierarchy C provided that for each concept 𝑐 ∈ 𝐶: 
• Concept 𝑐 has a unique representation neuron 𝑐𝑒𝑝 𝑐 . 
• Suppose that a set 𝐵 of level 0 concepts in 𝐶 is presented.  Then:  

• If 𝑐 is 𝑐2-supported by 𝐵 then 𝑐𝑒𝑝(𝑐) must fire.  
• if 𝑐 is not 𝑐1-supported by B then 𝑐𝑒𝑝(𝑐) must not fire. 

 



Learning problem 
• The network N initially doesn’t know which concept 

hierarchy it should learn; suppose in some execution, a 
particular concept hierarchy C is to be learned. 

• To show a concept 𝑐, present all its leaves (level 0 
descendants). 

• Work bottom-up, showing each concept only after each of 
its children has been shown “sufficiently many” times 
(σ times, for a parameter σ). 

• Otherwise, arbitrary interleaving is allowed. 
• Then after not too long, the network N should reach a state 

from which it 𝑐1, 𝑐2 -recognizes concept hierarchy C. 
• We say that network N 𝑐1, 𝑐2 -learns concept hierarchy C. 

 



Learning Hierarchically-Structured Concepts 

1. Introduction  
2. Data Model 
3. Network Model 
4. Problem Statements 
5. Algorithms for Recognition and Noise-Free Learning 
6. Extension:  Noisy Learning 
7. Lower Bounds 
8. Conclusions 



5. Algorithms 
• Recognition algorithm, for a given concept hierarchy C: 
• Embed the hierarchy in the layered network, each level at the 

same-numbered layer. 
 
 

 
 
• Weights from reps of children to reps of parents can be 1, 

others 0 (for example). 
• For a given 𝑐1, 𝑐2, set threshold τ for every non-input neuron 

to 𝑐1 + 𝑐2 𝑘/2. 
• This network solves the 𝑐1, 𝑐2 -recognition problem for 

concept hierarchy C; time is ℓ𝑚𝑚𝑚. 



Learning algorithm 
• Assume the network starts in a “clean state”, where weights 

are all 1 / 𝑘ℓ𝑚𝑚𝑚 . 
• Threshold 𝜏 = (𝑐1 + 𝑐2)√𝑘 / 2. 
• Use a bottom-up discipline for showing the concepts in C: 

• To show a concept 𝑐, present all its leaves (level 0 descendants). 
• Work bottom-up in the concept hierarchy, showing each concept only 

after each of its children has been shown σ times, for a parameter σ. 
• Otherwise, arbitrary interleaving is allowed. 

• Given these inputs and starting conditions, network just 
executes normally, following the given activation function and 
Oja’s learning rule. 

• Results in learning the concepts in C bottom-up. 



Learning algorithm 
• Level 𝑙 concepts acquire representations in layer 𝑙; the algorithm 

embeds the hierarchy in the network graph, level by level. 
 
 
 
 
 
 

 
• When trying to learn a level 𝑙 concept 𝑐: 

• We assume (inductively) that each of 𝑐 s′  children has already acquired a 
𝑐𝑒𝑝 in layer 𝑙 − 1, which has already learned to fire in response to 
presentation of its leaves. 

• So presenting all the 𝑐𝑒𝑝𝑠 of all the leaves of 𝑐 together results in firing of 
the 𝑐𝑒𝑝𝑠 of all these children. 

• These induce potential at layer 𝑙 neurons. 



Learning algorithm 
• When trying to learn a level 𝑙 concept 𝑐: 

• We assume (inductively) that each of 𝑐 s′  children has already acquired 
a 𝑐𝑒𝑝 in layer 𝑙 − 1, which has already learned to fire in response to 
presentation of its leaves. 

• So presenting all the 𝑐𝑒𝑝𝑠 of all the leaves of 𝑐 together results in firing 
of the 𝑐𝑒𝑝𝑠 of all these children. 

• These induce potential at layer 𝑙 neurons. 
• We use a Winner-Take-All module to select one neuron 𝑢 (the one with 

the highest potential), and put it into “engaged” mode for learning. 
• Neuron 𝑢 learns using Oja’s rule:  Incoming edges from 𝑐𝑒𝑝𝑠 of 𝑐’s 

children get strengthened, others get weakened. 
• Even one step ensures that the same 𝑢 will later be selected for the 

same concept 𝑐, and 𝑢 will not later be selected for any other concept. 
• After 𝑐 has been shown 𝜎 times, 𝑢 will have learned to fire in response 

to presentation of all its leaves, and more strongly, to a sufficient 
fraction of the leaves. 
 



Learning algorithm 
Theorem 1:  Let N  be the network described above.   
Assume that the learning rate 𝜂 is  1

4𝑘
.   

Let 𝑐1, 𝑐2 ∈ 0,1 , 𝑐1 < 𝑐2.   
Let 𝜖 = 𝑐2 − 𝑐1  / (𝑐1+ 𝑐2). 
Let C be any concept hierarchy with max level ≤ max layer in N.   
Suppose that the concepts in C are shown according to a 𝜎–bottom-up     
presentation schedule, where  
                  𝜎 = 𝑂( (1 /𝜂 𝑘 )(ℓ𝑚𝑚𝑚 log 𝑘 + 1/ϵ)    +    𝑏 log 𝑘  ). 
Then N 𝑐1, 𝑐2 -learns C. 
 
• Proof:  A series of lemmas analyzing the step-by-step changes caused by 

using Oja’s rule. 
• The first term bounds the time to increase the weights of the needed edges to 

something in the range [1 / 1 + 𝜖 𝑘, 1 / 𝑘]. That is, to roughly 1 / 𝑘. 
• The second term bounds the time to decrease the weights of the 

unwanted edges to at most 1 / 𝑘𝑙𝑚𝑚𝑚+𝑏. 



6. Extension:  Noisy Learning 
• Bottom-up discipline for the noise-free learning algorithm: 

• To show a concept 𝑐, present all its leaves (level 0 descendants). 
• Work bottom-up in the concept hierarchy, showing each concept only 

after each of its children has been shown σ times, for a parameter σ. 
• Otherwise, arbitrary interleaving is allowed. 

• Now relax this discipline so that not all the children need to 
be shown all the time. 

• To show a concept 𝑐, determine a random size 𝑝𝑘 subset of 
its children, and for each, a random size 𝑝𝑘 subset of their 
children,…(recursively). 

• Present the resulting set 𝐵 of leaves of 𝑐. 
• Work bottom-up as before, showing each concept only after 

each of its children has been shown σ times, for parameter σ. 
 
 



Noisy Learning 
• To show a concept 𝑐, determine a random size 𝑝𝑘 subset of 

its children, and for each, a random size 𝑝𝑘 subset of their 
children,…(recursively). 

• Present the resulting set 𝐵 of leaves of 𝑐. 
• Work bottom-up as before, showing each concept only after 

each of its children has been shown σ times, for parameter σ. 
 

Theorem 2:  Analogous to Theorem 1, but with a larger value of 𝜎. 
Let N  be the network described above, with a different constraint on  
the learning rate 𝜂. 
Then N 𝑐1, 𝑐2 -learns C, with high probability. 
Proof: Similar to Theorem 1, but it takes a bit longer to learn each 
concept, and the learning occurs only with high probability. 
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7. Lower bounds 
Theorem 3:  If network N (𝑐1, 𝑐2)-recognizes concept hierarchy C 
with 𝑐22 < 2𝑐1 − 𝑐12, then the number of layers in N must be ≥ 
number of levels in C. 
For example, consider 𝑐1 = 1

3
, 𝑐2 = 2

3
. 

Proof idea:  If there are too few layers, some child relationships 
aren’t explicitly represented.  Causes confusion between cases 
where the network is supposed to recognize a concept and 
cases where it is required not to. 
Similar-sounding lower bounds on number of levels have been 
proved [Mhaskar, Liao, Poggio 2016], [Telgarsky 2016], but using 
very different methods (function approximation theory). 

 
Proof:  Uses induction on the number of levels in C; first consider 
the base case. 

 



Base case:  2 levels, 1 layer 
Theorem 4:  Suppose that concept hierarchy C has max level 2 
and network N has max layer 1.  Suppose that 𝑐22 < 2𝑐1 − 𝑐12.  
Then N does not (𝑐1, 𝑐2)-recognize concept hierarchy C. 

 
 

 
 
 
Proof:  Suppose it does, and consider any level 2 concept 𝑐. 
Reps for 𝑐 and its children must be in layer 1, so 𝑐𝑒𝑝(𝑐) cannot 
be influenced by reps of 𝑐’s children, but only its grandchildren. 
For each child 𝑏 of 𝑐, define 𝑊(𝑏)  = total weight of all edges to 
𝑐𝑒𝑝(𝑐) from 𝑐𝑒𝑝𝑠 of grandchildren of 𝑐 that are children of 𝑏. 
Define 𝑊 = total weight of all edges to 𝑐𝑒𝑝(𝑐) from 𝑐𝑒𝑝𝑠 of 
grandchildren of 𝑐, = Σ𝑏 𝑊 𝑏 . 
 

Etc. 
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Base case:  2 levels, 1 layer 
For each child 𝑏 of 𝑐, define 𝑊(𝑏)  = total weight of all edges 
to 𝑐𝑒𝑝(𝑐) from grandchildren of 𝑐 that are children of 𝑏. 
Define 𝑊 = total weight of all edges to 𝑐𝑒𝑝(𝑐) from reps of 
grandchildren of 𝑐, = Σ𝑏 𝑊 𝑏 . 
Illustration of 𝑊(𝑏): 

 

0 

1 
𝑐𝑒𝑝(𝑐) 

𝑐𝑒𝑝 𝑏 ,  
𝑏 ∈  𝑐𝑤𝑤𝑙𝑐𝑐𝑒𝑛(𝑐) 

𝑐𝑒𝑝𝑠(𝑐𝑤𝑤𝑙𝑐𝑐𝑒𝑛 𝑏 ) 



Base case:  2 levels, 1 layer 
𝑊(𝑏)  = total weight of all edges to 𝑐𝑒𝑝(𝑐) from 𝑐𝑒𝑝𝑠 of 
grandchildren of 𝑐 that are children of 𝑏. 
𝑊 = total weight of all edges to 𝑐𝑒𝑝(𝑐) from 𝑐𝑒𝑝𝑠 of 
grandchildren of 𝑐, = Σ𝑏 𝑊 𝑏 . 
Scenario 𝐴 (𝑐𝑒𝑝(𝑐) should fire):  Choose 𝐵 = 𝑐2 fraction of 
𝑐’s children with smallest 𝑊(𝑏), and for each, its 𝑐2 fraction of 
children with smallest weights. 
Lemma:  Total incoming potential to 𝑐𝑒𝑝(𝑐) is ≤ 𝑐22 𝑊. 
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Base case:  2 levels, 1 layer 
Scenario 𝐴 (𝑐𝑒𝑝(𝑐) should fire):  Choose 𝐵 = 𝑐2 fraction of 
𝑐’s children with smallest 𝑊(𝑏), and for each, its 𝑐2 fraction 
of children with smallest weights. 
Lemma:  Total incoming potential to c is ≤ 𝑐22 𝑊. 
Scenario 𝐵 (𝑐𝑒𝑝(𝑐) should not fire): Choose 𝐵 = 𝑐1 fraction 
of 𝑐’s children with largest 𝑊(𝑏), and for each, all of its 
children.  For each other child of 𝑐, chose 𝑐1 fraction of 
children with largest weights. 
Lemma:  Total incoming potential to 𝑐 is ≥ (2 𝑐1  − 𝑐12) 𝑊. 
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Base case:  2 levels, 1 layer 
Scenario 𝐴 (𝑐𝑒𝑝(𝑐) should fire):  Choose 𝐵 = 𝑐2 fraction of 
𝑐’s children with smallest 𝑊(𝑏), and for each, its 𝑐2 fraction 
of children with smallest weights. 
Lemma:  Total incoming potential to c is ≤ 𝑐22 𝑊. 
Scenario 𝐵 (𝑐𝑒𝑝(𝑐) should not fire): Choose 𝐵 = 𝑐1 fraction 
of 𝑐’s children with largest 𝑊(𝑏), and for each, all of its 
children.  For each other child of 𝑐, chose 𝑐1 fraction of 
children with largest weights. 
Lemma:  Total incoming potential to 𝑐 is ≥ (2 𝑐1  − 𝑐12) 𝑊. 
So firing threshold of 𝑐𝑒𝑝(𝑐) must be ≤ 𝑐22 𝑊 and ≥ (2 𝑐1  −
𝑐12) 𝑊. 
Contradiction since we have assumed that 𝑐22 < 2𝑐1 − 𝑐12.  
 



General case 
Theorem 3 (Restated):  Assume that the network N has fewer 
layers than the number of levels in the concept hierarchy C.  
Assume 𝑐22 < 2𝑐1 − 𝑐12.   
Then N does not (𝑐1, 𝑐2)-recognize concept hierarchy C. 
 
Note:  Here we add a non-interference assumption: 
Consider any level ℓ and any set 𝐵 of level ℓ concepts in 𝐶.   
For any 𝑏 ∈ 𝐵, let 𝑁(𝑏) be the set of neurons at layers ≤ ℓ 
whose firing is triggered by showing 𝑏.  
Let 𝑁 be the set of neurons at layers ≤ ℓ  whose firing is 
triggered by showing all the concepts in 𝐵 together. 
Then all the 𝑁(𝑏) sets are disjoint, and 𝑁 = ⋃ 𝑁(𝑏)𝑏∈𝐵 . 

 



General case 
Theorem 3:  Assume that the network N has fewer layers 
than the number of levels in the concept hierarchy C.  
Assume 𝑐22 < 2𝑐1 − 𝑐12.   
Then N does not (𝑐1, 𝑐2)-recognize concept hierarchy C. 
 
Key Lemma:  Suppose that network N (𝑐1, 𝑐2)-recognizes 
concept hierarchy C (with non-interference assumption).  
Then for every ℓ, 1 ≤ ℓ ≤ ℓ𝑚𝑚𝑚 , and for every level ℓ 
concept 𝑐 ∈ 𝐶, 𝑐𝑒𝑝 𝑐  appears in a layer ≥ ℓ. 
 
Proof of Lemma:  By induction on ℓ. 
Inductive step:  Assume a level ℓ concept 𝑐 with  
𝑙𝑎𝑦𝑒𝑐(𝑐𝑒𝑝 𝑐 ) ≤ ℓ − 1. 
 



General case 
Lemma:  Suppose that network N (𝑐1, 𝑐2)-recognizes concept 
hierarchy C (with non-interference assumption).   
Then for every ℓ, 1 ≤ ℓ ≤ ℓ𝑚𝑚𝑚, and for every level ℓ concept 
𝑐 ∈ 𝐶, 𝑐𝑒𝑝 𝑐  appears in a layer ≥ ℓ. 
 
Proof:  Assume level ℓ concept 𝑐 with 𝑙𝑎𝑦𝑒𝑐(𝑐𝑒𝑝 𝑐 ) ≤ ℓ − 1. 
By I.H., all reps of 𝑐𝑤𝑤𝑙𝑐𝑐𝑒𝑛(𝑐) are at layers ≥ ℓ − 1, hence cannot 
influence the firing of 𝑐𝑒𝑝 𝑐 . 
So again, we focus on 𝑐′s grandchildren. 
Define 𝑊, and 𝑊(𝑏) for each child 𝑏 of 𝑐, as in the 1-layer proof, 
based on total weights incoming to 𝑐𝑒𝑝 𝑐  that are contributed by 
showing grandchildren of 𝑐. 
But now the contributions are from whatever layer ℓ − 1 neurons 
they cause to fire, not necessarily just 𝑐𝑒𝑝𝑠 of the grandchildren. 
Then argue similarly to before. 



General case 
Proof:  Define 𝑊, and 𝑊(𝑏) for each child 𝑏 of 𝑐, based on 
total weights incoming to 𝑐𝑒𝑝 𝑐  that are contributed by 
showing grandchildren of 𝑐. 
• Illustration of 𝑊(𝑏): 
 
 
 
 
 
 
 
 
• Then argue similarly to before.   
 

ℓ − 2 

ℓ − 1  

𝑐𝑒𝑝(𝑐) 𝑐𝑒𝑝(𝑏) 

Level ℓ − 2 neurons whose firing is triggered by  
showing 𝑐𝑤𝑤𝑙𝑐𝑐𝑒𝑛 𝑏  

0 

𝑐𝑒𝑝𝑠(𝑙𝑒𝑎𝑣𝑒𝑠(𝑐𝑤𝑤𝑙𝑐𝑐𝑒𝑛(𝑏))) 



General case 
• Define Scenario A (𝑐𝑒𝑝(𝑐) should fire even though few 

grandchildren are included), and Scenario B (𝑐𝑒𝑝(𝑐) should not 
fire even though many grandchildren are included).  
 
 
 
 
 
 
 

• When we include a grandchild, present all its leaves. 
• Reach the same contradiction as before, based on assuming 
𝑐22 < 2𝑐1 − 𝑐12.  

• Non-interference allows us to simply sum weights to account for 
contributions from multiple grandchildren. 

ℓ − 1 

ℓ − 2 

ℓ 

ℓ − 1 
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8.  Conclusions 
• Summary:   

• Hierarchically-structured concepts, based (initially) on a simple tree 
structure. 

• Noise-tolerant recognition problem. 
• Learning problem, leading to noise-tolerant recognition. 
• Learning algorithms, with/without noise during the learning process. 
• Lower bounds on number of layers, for noise-tolerant recognition. 

• Discussion: 
• Gives some insight into how concepts with certain types of logical 

structure can be learned, and into limitations on networks that 
recognize such concepts. 

• Very simplified data model, needs many extensions. 
 



Future Work on Learning Structured 
Concepts 

• Different kinds of concept hierarchies, esp. with some 
overlap between child sets (DAG instead of forest). 

• Different network structures, e.g., with sparse random 
connections instead of all-to-all, or with feedback edges. 

• Learning different kinds of structure (logical relationships, 
geometric, physical). 

• Different forms of representation (coding), not just single 
neurons. 

• Strengthen connections with biology. 
 



Other Future Work on 
Brain Algorithms 

• Models 
• Algorithms, for decision problems, neural 

representation problems, recognition, learning 
and recall. 

• Representation of various kinds of concepts in 
the brain. 

• Issues: 
• Role of randomness, inhibition. 
• Modularity. 
• Noise-tolerance, fault-tolerance.   
• To what extent can network mechanisms be 

learned, vs. pre-designed or evolved?  
• … 
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