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Neuroscience-Inspired Learning: Motivation

Deep learning:

Has superior performance in practice

applications: computer vision, speech recognition, natural language
processing, audio recognition, etc.

Was derived their inspiration from biology

“Drawbacks” compared with the brain:

Vulnerable to adversarial noises

High energy consumption

Hardware requirements

Further inspiration from the brain might be helpful
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Focus of This Paper: Bio-Plausibility

Most artificial NNs resemble natural NNs only superficially

Training (synaptic strength update) is not bio-plausible
– backpropagation

Focus here: Bio-plausibility on the algorithmic level

not attempt to reproduce many biological details (not ion channels)

develop algorithms that respect major biological constraints



Bio-Plausibility: Be “Online” and Be “Local”

(Be “Online”): input data are streamed to the algorithm (neural
circuits) sequentially, and the corresponding output must be
computed before the next input sample arrives

(Be “Local”): a biological synapse can update its weight based on the
activity of only the two neurons that the synapse connects.

Such “locality” of the learning rule is violated by most artificial NNs
including backpropagation-based deep learning networks.



Key Contributions-I

A family of biologically plausible artificial neural networks (NNs) for
unsupervised learning

The inspiration from the brain:
Signal processing in the brain tends to preserves similarity

[Qin-Mudur-Pehlevan’20]

Mathematically:

Use a family of principled objective functions containing a term that
penalizes dissimilarity

Derive the NNs by running alternating stochastic gradient descent on
the corresponding objective functions



Key Contributions (Continued)

This family of objective functions cover a large range of interesting
machine learning problems, such as

1 linear dimensionality reduction (PCA);

2 sparse and/or nonnegative feature extraction;

3 blind nonnegative source separation;

4 clustering and manifold learning.
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Linear dimensionality reduction (PCA)



Outline of the remainder

1 Background: Why is the previous work not satisfactory

Extending Oja’s rule to multiple output neurons setting

Changing the objective might suffice?

2 Similarity-based approach

Similarity-based objectives

Local learning rules obtained by alternating stochastic gradient descent

Key technique: Variable substitution trick

3 Beyond PCA: Other tasks solved by the similarity-based approach

4 Summary and conclusions
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Principal Component Analysis (PCA)

PCA in plain words:

The first component is the a
“best fitting”line

The second component is the
next best-fitting line and is
perpendicular to the first

In general,

subspace projection

orthogonality of the
components



Principal Component Analysis (PCA)

Mathematically:

Given T data points {x1, · · · , xT} ⊆ Rn

Let u ∈ Rn such that ‖u‖2 = 1.

The first/top principle of the given dataset is

u∗ = arg min
u

1

2T

T∑
i=1

‖xi − 〈xi , u〉 u‖2
2.

Oja’s rule can be viewed as running SGD on the above objective

Oja’s rule finds the first principle



Connection between SGD v.s. Oja’s Rule

PCA: u∗ = arg minu
1

2T

∑T
i=1 ‖xi − 〈xi , u〉 u‖

2
2

rewriting ‖xi − 〈xi , u〉 u‖2
2 = miny ‖xi − yu‖2

2

Derivation of Oja’s Rule:

Update ut via SGD: Let yt = 〈xt , ut−1〉

ut ←
ut−1 + η 〈xt , ut−1〉 xt
‖ut−1 + η 〈xt , ut−1〉 xt‖2

= ut−1 + η(xt − ut−1yt)yt + O(η2)

Update ut via alternating SGD: First minimize y , then SGD on u

yt ← 〈xt , ut−1〉 ; and ut ← ut−1 + η(xt − ut−1yt)yt .

Oja’s rule finds the first component!!!
How about the top k components?
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How about The Top k Components?

Question

Is it possible to solve the online general PCA algorithms using multiple
neurons with bio-plausible updates?

The objective for top component

u∗ = arg min
u:‖u‖2=1

1

2T

T∑
i=1

min
yi
‖xi − yiu‖2

2

The objective for top k components

W ∗ = arg min
W :W∈Rn×k

1

2T

T∑
i=1

min
yi
‖xi −Wyi‖2

2

Alternating SGD on the blue-colored objective is no longer bio-plausible
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Alternating SGD is NO LONGER Bio-Plausible

W ∗ = arg minW :W∈Rn×k
1

2T

∑T
i=1 minyi ‖xi −Wyi‖2

2

Let y `t be the `-th entry of yt .

Let W j
t−1 be the j–th column of Wt−1 and W ij

t−1 be the entry at the
i-th row and the j–th column.

Update of y : ∇y `t =
〈
W `

t−1, xt
〉
−
∑k

j=1

〈
W `

t−1,W
j
t−1

〉
y jt

Update of W : W ij
t = W ij

t−1 + η
(
x it −

∑k
`=1 W

`i
t−1y

`
t

)
y jt

Is it possible to find an alternative objective for PCA?
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Similarity-based Objective Function

min
y1,...yT

1

T 2

T∑
t=1

T∑
t′=1

(xt
>xt′ − yt

>yt′)
2

Similarity: dot product for a pair of inputs (Rn) or outputs
(Rk , k < n).

Matching: want similarity of inputs and that of outputs to be close

Offline solution: unique global PCA
solution up to an orthogonal rotation, aka principal subspace projection

[Pehlevan-Chklovski, NeurIPS 15]
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Problems Going Online?

min
y1,...yT

1

T 2

T∑
t=1

T∑
t′=1

(xt
>xt′ − yt

>yt′)
2

Require information from other time steps (non-online and non-local)

Mapping onto NN with synaptic weight updates (unclear if
bio-plausible)

min
y1,...yT

1

T 2

T∑
t=1

T∑
t′=1

(xt
>xt′ − yt

>yt′)
2

= min
y1,...yT

1

T 2

T∑
t=1

T∑
t′=1

(−2y>t yt′x
>
t xt′ + y>t yt′y

>
t yt′)

= min
y1,...yT

− 2

T 2

T∑
t=1

T∑
t′=1

y>t yt′x
>
t xt′ +

1

T 2

T∑
t=1

T∑
t′=1

y>t yt′y
>
t yt′
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Variable Substitution Trick

Key intuition: for any given a, (a− b)2 ≥ 0 is minimized when b = a.

Apply to Matrix W :

0 ≤

〈
W − 1

T

T∑
t=1

xty
>
t ,W −

1

T

T∑
t=1

xty
>
t

〉

= TrW>W − 2

T

T∑
t=1

y>t Wxt +
1

T 2

T∑
t=1

T∑
t′=1

y>t yt′x
>
t xt′

=> − 1

T 2

T∑
t=1

T∑
t′=1

y>t yt′x
>
t xt′ ≤ TrW>W − 2

T

T∑
t=1

y>t Wxt

where the equality holds iff W = 1
T

∑T
t=1 ytx

>
t , i.e.

− 1

T 2

T∑
t=1

T∑
t′=1

y>t yt′x
>
t xt′ = min

W∈Rk×n
TrW>W − 2

T

T∑
t=1

y>t Wxt .
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Variable Substitution Trick

Objective func:

min
y1,...yT

− 2

T 2

T∑
t=1

T∑
t′=1

y>t yt′x
>
t xt′ +

1

T 2

T∑
t=1

T∑
t′=1

y>t yt′y
>
t yt′

First term:

− 2

T 2

T∑
t=1

T∑
t′=1

y>t yt′x
>
t xt′ = min

W∈Rk×n
2 TrW>W − 4

T

T∑
t=1

y>t Wxt .

Similarly,

1

T 2

T∑
t=1

T∑
t′=1

y>t yt′y
>
t yt′ = max

M∈Rk×k

2

T

T∑
t=1

y>t Myt − TrM>M

New form of the objective function is local in the online setting!
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New Form of Objective Function

min
y1,...yT

[
min

W∈Rk×n
max

M∈Rk×k

1

T

T∑
t=1

[
2 TrW>W − TrM>M + lt(W ,M, yt)

]]

= min
W∈Rk×n

max
M∈Rk×k

1

T

T∑
t=1

[
2 TrW>W − TrM>M + min

yt
lt(W ,M, yt)

]
where

lt(W ,M, yt) = −4x>t W>yt + 2y>t Myt

We have successfully separated the computations of outputs at different
time steps, satisfying the requirement to be local.
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Gradient Descent/Ascent Algorithm

Gradient descent (minimizing) lt(W ,M, yt) wrt yt

d

dyt
(−4x>t W>yt + 2y>t Myt) = −4(Wxt −Myt)

=> ẏt = Wxt −Myt

Gradient descent (minimizing) objective function wrt W

Wij ←Wij + η(yixj −Wij)

Gradient ascent (maximizing) objective function wrt M

Mij ← Mij +
η

2
(yiyj −Mij)

Interpretation

W and M represent synaptic weight changes in feed-forward and
lateral connections. W and -M correspond to Hebbian/Anti-Hebbian.
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Remaining Issues

There are still several issues remaining...

Not exactly recovering principal components, but principal subspace
projections

Recurrent activity on output neurons must settle faster than input
variations

Output neurons compete with each other with lateral connections - in
real brains, have to go through inter-neurons
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Whitening Constraints and Inter-neurons

In order to derive PCA algorithms, change the objective function to
encourage orthogonality of W (1).

Replace M with a whitening constraint (2):

min
y1,...yT

− 1

T 2

T∑
t=1

T∑
t′=1

y>t yt′x
>
t xt′ , s.t.

1

T

∑
t

yty
>
t = Ik

where Ik is the k-by-k identity matrix.

Objective function modeled by Lagrange formalism:

min
y1,...yT

max
z1,...,zT

− 1

T 2

T∑
t=1

T∑
t′=1

y>t yt′x
>
t xt′ +

1

T 2

T∑
t=1

T∑
t′=1

z>t zt′(y
>
t yt′ − δt,t′)

where δt,t′ is the Kronecker delta, and z>t zt′ naturally model interneuron
activities. See details in (3).
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Visualizing NN
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Beyond PCA:

Other tasks solved by the similarity-based approach



Nonnegative Similarity-Matching Objective

“Nonnegative”: variable constraints – this constraint corresponds to
ReLU activation

The minimization problem becomes

min
y1,...yT≥0

1

T 2

T∑
t=1

T∑
t′=1

(xt
>xt′ − yt

>yt′)
2 (1)

Equation (1) can be solved by the same learning rule except that

the output variables are projected onto the nonnegative domain
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Visualization

Figure: B) Nonnegative similarity matching learns edge filters from patches of
whitened natural scenes.



Nonnegative Similarity-Matching for Clustering

K-means clustering (MacQueen, 1967)

Let C1, · · · , CK be a partition of the T data points x1, · · · , xT . Want to
find a best partition such that

min
C1,··· ,CK

K∑
k=1

∑
t∈Ck

∥∥∥∥∥xt − 1

nk

∑
s∈Ck

xs

∥∥∥∥∥
2

2

, where nk := |Ck |

Let Y ∈ RK×T be a scaled indicator matrix s.t.

Y ∗ = arg minY ‖X>X − Y>Y ‖ gives a optimal K-means clustering
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A Simplified Objective for Soft-Clustering
Why a simplified objective?

Finding the optimal solution is rather challenging factorization problem.

The simplified objective is chosen so that clustering of inputs is based
on input pairwise similarities

min
y1,...yT≥0

1

T 2

T∑
t=1

T∑
t′=1

(
α− x>t xt′

)
y>t yt′

s.t. ‖yt‖2 ≤ 1 ∀t

Here α > 0 is the clustering threshold.

Correctness of the clustering algorithm depends on how well the
inputs are separated!!!
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Manifold Tiling

In many real-world problems, data points are not well-segregated but lie on
low-dimensional manifolds. For such data, the optimal solution of the
above simplified objective effectively tiles the data manifold
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Conclusions

min
∀t,yt∈Ω

[
−

T∑
t=1

T∑
t′=1

y>t yt′x
>
t xt′ + f (y1, ..., yT )

]

First term: the covariance of the similarity of the outputs and that of
inputs.

Optimizing first term online gives rise to synaptic local learning rules.

Second term f and constraints Ω: inhibitory mechanisms and other
constraints that make the NN bio-plausible.
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Future Work

Convergence Proof of online algorithms

Supervised/Semi-supervised learning with reinforcement

Temporal correlations in time in input data points

Stacking similarity-based NNs

Spikes in biological NNs - all or nothing
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