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Biology of the Retina

The structure and cell types of the retina
The neural circuits of the retina
Phototransduction

Gap junctions and ribbon synapses
Bipolar cells

Center surround receptive field



A Refraction of light onto the retina
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A Section of retina B Neurons in the retina
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A Cone signal circuitry
B Rod signal circuitry
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A Phototransduction and neural signaling
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Three types of synapse

e Chemical synapse, digital output
e Ribbon synapse, analog output

e (Gap junction, bidirectional analog output
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A Cone signal circuitry

g 2 07 On area Stimulus pattern Firing rate
8 g L0 Off area
&
g Cone 2 Cone M | Stimuli ON cells OFF cells Sustained cells Transient cells
aJ
Photoreceptors 'f ] ) U
1 Center < B
only P _ R
! 9 by 1
S} 0) ' ®
( ‘\ \ / )
% ~ — rd //
2 Surround y T
only ’ 3
Horizontal SR,
cells I S
e /
. . \\ 7’
Lateral Inhibition y W g
Bipolar 0
cells
3 Center and 22T SR
surround i \
uniform / ZEEN X
I d \ '
- \\ ,l ]

Amacrine go
cells -
/ 4 Center and
surround

’QU‘E"" opposite
Ganglion O @
cells

Time (s) Time (s)

ON OFF




A ON cell response
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RC Circuit
Out

e \We can treat membrane as a RC circuit

e Ex: Hogkin-Huxley model with voltage-
depedent resistance
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Solution

dV
t—=—-V+V_ + RI1), 7=RC
dt
o, ",V + RI(s)
Vit) =e 7| V(O)+ et ds
s=0 2

When the input current is a constant we have

V(£) = e *V(0) + (1 — e~*)(V,, + RI)



Convolution View

e |n the above equation, set the membrane potential and
initial voltage as 0. We get

[

S —1

. V(t)=Jef

0 T

ds, which we can rewrite as

R
. V() =—e"* (1)
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Adaptation of the retina

e Recall that by efficient coding theory, we derive that the
connection of the retina should be PCA, which induces
center surround receptive field.

e This is working under the assumption that the correlation
of natural image statistics are high for nearby pixels and
iInverse proportion to the square of the distance.

e By subtracting the nearby values, we only transmit what
Is different from expectation and hence can more
efficiently communicate. Ex: edge detection



What happens if the
environment iIs different?



Different adaptation

Contrast adaptation

Spatial frequency adaptation
Orientation adaptation
Temporal sequence adaptation

Proposal of the underlying mechanism: Short term
learning with vesicles and desensitization with AMPA






Contrast adaptation

e When you are walking in MIT, because the scene
contains wide range of illumination, the retina decreases
the sensitivity to cover the whole range. Therefore it is
much harder to notice a random person.

e When you are skiing in Killington, because the scene has
very low contrast, the retina increases its sensitivity to
distinguish different shades of the white. Therefore it is
much easier to notice other skiers.
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Amacrine cells - nonadapting
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Vesicle release

* |n addition to the long term
Hebbian plasticity, there is
also short term plasticity
which does not change the
synaptic weight

— 2 mM Calcium |3 PA
— 4 mM Calcium

10 ms

_____

e There are three pools: reserve,
recycling and ready release
pools

e When RRP and recycling
pools deplete, the synapse
becomes desensitized
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STP vs STD

There are actually two competing factors here

The increase release probability from accumulation of
calcium

The depletion of synaptic resources from release of RRP
and recycling pools

So for a synapse with low release probability, we can
actually observe short term potentiation



Simplified STL

e So instead of modeling three vesicle pools, we can just
model synapse resources and synapse utilization

e Usually utilization is a slower constant while resources is
a faster constant
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Assembly without LTP

e Even without LTP, weare o,
able to demonstrate cell '
assembly ¥

* Generally, with STDP R
along, it is very unstable to 0,80 +—==
form assembly. Only with 5

the aids of STL, STDP can 80,160—
stabilize more robustly '

# cell

e S0 maybe STL is the main
driving force while LTP is a
mechanism to consolidate? 080




Pixel vs Object

Object is a higher level visual feature. Does the retina
understand object?

We can define a simple rough definition of the object—
matter that moves together.

We already mentioned that the receptive fields of the
retina will emphasize the boundary of the moving objects.

But what if there are many objects are moving?
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Vision Is dynamic

Different objects move at
different directions.

So different directions generate
different spike sequences.

RGC already understands
object.

Normal ML trains on static
Images. However, since brain
receives dynamic input, it has
extra information to work with.
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Summary

Retina develops a center surround receptive field for
natural image statistics.

Retina adapts to new statistics to code more efficiently.

Short term learning has two competing factors, synaptic
resource and synaptic utilization.

The motion of the scene helps the retina understand
what an object is.






