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SUMMARY

In multiple sensory systems, adaptation to the vari-
ance of a sensory input changes the sensitivity,
kinetics, and average response over timescales
ranging from < 100 ms to tens of seconds. Here, we
present a simple, biophysically relevant model of
retinal contrast adaptation that accurately captures
both the membrane potential response and all adap-
tive properties. The adaptive component of this
model is a first-order kinetic process of the type
used to describe ion channel gating and synaptic
transmission. From the model, we conclude that all
adaptivedynamicscanbeaccounted for bydepletion
of a signaling mechanism, and that variance adapta-
tion can be explained as adaptation to the mean of
a rectified signal. Themodel parameters show strong
similarity to known properties of bipolar cell synaptic
vesicle pools. Diverse types of adaptive properties
that implement theoretical principles of efficient
coding can be generated by a single type ofmolecule
or synapse with just a few microscopic states.

INTRODUCTION

The range of natural signals exceeds the dynamic range of

neurons. As a result, neural circuits adapt so as to more effi-

ciently encode the recent history of inputs. One widespread

example of this process occurs in response to a change in the

magnitude of fluctuations, or the variance of a sensory input

(Laughlin, 1989). Variance adaptation occurs in many sensory

systems, including the vertebrate retina and visual cortex, the

fly visual system, and the avian auditory forebrain (Fairhall

et al., 2001; Nagel and Doupe, 2006; Ohzawa et al., 1985; Shap-

ley and Victor, 1978; Smirnakis et al., 1997).

When the stimulus environment changes from a low to high

variance, temporal filtering quickly accelerates, sensitivity

decreases, and the average response increases. (Baccus and

Meister, 2002; Chander and Chichilnisky, 2001; Kim and Rieke,

2001). When the environment maintains a high variance, slow

changes occur over 1–10 s, comprised mostly of a homeostatic
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decay in the average response that opposes the fast change in

baseline. (Baccus and Meister, 2002; Fairhall et al., 2001; Nagel

and Doupe, 2006). Upon a decrease in contrast, all these

changes reverse direction. The time constants for slow adapta-

tion are asymmetric, with the baseline decaying faster in high

contrast than it rises in low contrast. The remarkable similarity

of these properties across species and sensory systems indi-

cates a strong commonality in the encoding of signals that

vary in amplitude (Baccus, 2006; Baccus and Meister, 2002;

Fairhall et al., 2001 ; Nagel and Doupe, 2006).

In the vertebrate retina, although all of these adaptive changes

are observed among ganglion cells and some amacrine cells,

there is diversity in the adaptive properties of different cell pop-

ulations. For example, Off cells change their gain more than On

cells, and On cells show less of a change in temporal processing

(Beaudoin et al., 2008; Chander and Chichilnisky, 2001). Bipolar

cells also vary in their adaptive properties, with some cells not

adapting, whereas others change only their gain or their

temporal processing, or do not exhibit slow changes in baseline

(Baccus and Meister, 2002; Rieke, 2001).

There is also diversity in the potential mechanisms that have

been proposed for contrast adaptation in retinal ganglion cells

(Demb, 2008). Inactivation of voltage-dependent Na channels

in ganglion cells can quickly change the gain (Kim and Rieke,

2003). In addition, a large fraction of adaptation occurs as the

signal travels through the synapse from bipolar to ganglion cell

(Beaudoin et al., 2007; Zaghloul et al., 2005). A change in basal

vesicle release is proposed to cause slow contrast adaptation,

and another calcium-related mechanism, such as channel

inactivation, might cause fast adaptation (Beaudoin et al.,

2008; Demb, 2008; Manookin and Demb, 2006).

Across sensory systems, a substantial difficulty in connecting

the apparently complex and diverse phenomena of variance

adaptation with the set of potential cellular mechanisms is the

lack of a quantitative model that captures both the immediate

sensory response and all adaptive properties. Although several

models have been proposed for contrast adaptation (Gaudry

and Reinagel, 2007 ; Mante et al., 2008 ; Shapley and Victor,

1979), they focused on only a few aspects of adaptation or

used abstract components that lack a clear connection to bio-

physical mechanisms. In addition, previous efforts to describe

the rules of contrast adaptation using a model were constrained

only by the firing rate of spiking neurons and not by the

membrane potential response.
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Figure 1. Ganglion Cell Membrane Potential Response to Changing

Contrast

(A) Top, contrast of a randomly flickering stimulus drawn from a Gaussian

intensity distribution with a constant mean. Contrast values of 3%–30% were

presented for periods of 20 s. Middle, the membrane potential response of

a ganglion cell. The inset shows the recording before and after the spikes were

removed. Bottom, expanded segment showing contrast transitions. Colored

bars indicate intervals Hearly, 1–5 s after a step to high contrast, Hlate, 15–20 s

after a high-contrast step, Learly and Llate, defined as similar time intervals after

a low-contrast step.

(B) Linear-nonlinear models of different intervals indicated by the colored bars

in (A).
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Here, we present a simple theoretical framework that com-

bines aspects of models previously used to capture sensory

responses and cellular mechanisms, and use it to interpret the

adaptive behavior of retinal neurons. Our goals were to accu-

rately predict the intracellular membrane potential response to

a uniform field stimulus with a constant mean intensity across

a wide range of contrasts and to capture all adaptive properties

with a model that has a natural relationship to biophysical prop-

erties. We also wanted the model to be sufficiently simple to

allow insight into how its mechanics give rise to the multiple

properties of adaptation.
RESULTS

We presented to the isolated salamander retina a spatially

uniform visual stimulus that flickered randomly, and recorded

the intracellular membrane potential responses from inner retinal

neurons. The intensity changed every 30ms andwas drawn from

a Gaussian distribution with a constant mean to avoid contribu-

tions from luminance adaptation. Temporal contrast also varied

randomly by changing the standard deviation of the distribution
every 20 s, with each sequence lasting 300 s and having 15

contrasts (Figure 1A). To isolate the strong component of

adaptation that occurs prior to spiking (Baccus and Meister,

2002; Kim and Rieke, 2001; Zaghloul et al., 2005), we digitally

removed spikes from the recording to analyze the subthreshold

membrane potential.

Adaptive properties of neurons have been quantified using

a linear-nonlinear (LN) model (see Experimental Procedures)

consisting of a linear temporal filter passed through a static

nonlinearity. The linear filter represents the average feature that

depolarizes the cell, and the nonlinearity represents the average

instantaneous comparison between the filtered visual stimulus

and the response. Both quantities are average measures given

a particular set of stimulus statistics; the underlying system is

more complex with additional nonlinearities (Baccus and

Meister, 2002; Kim and Rieke, 2001). Thus, the LN model can

reveal and quantify adaptation but does not produce adaptation

itself. When LN models are used to represent different time

intervals relative to a contrast step, the most accurate linear filter

changes, as does the nonlinearity, indicating the presence of an

adaptive response (Figure 1B). A high contrast step quickly

accelerates temporal processing, as measured by the time to

peak of the linear filter, makes the temporal response more

differentiating, and decreases the sensitivity, which is defined

as the average slope of the nonlinearity (Demb, 2008). High

contrast also quickly produces a depolarizing offset, as

measured by the average value of the nonlinearity, that then

slowly decays. We then tested a new model to capture both

the intracellular membrane potential (Figure 1A) and adaptive

properties (Figure 1B) across multiple contrasts.

The Linear-Nonlinear-Kinetic Model
Many biophysical mechanisms produce changes in gain,

including ion channel inactivation, biochemical cascades,

receptor desensitization, and synaptic depression (Burrone

and Lagnado, 2000; DeVries and Schwartz, 1999; He et al.,

2002). A widely used approach to describe these mechanisms

uses a first-order kinetic model, whereby a system transitions

between different states and is governed by a set of rate

constants (Colquhoun and Hawkes, 1977; Hodgkin and Huxley,

1952). Initially, we sought to capture adaptive properties with

a kinetic model, without regard to any one corresponding mech-

anism. A simple example of such a model has four states (Fig-

ure 2A). The first state represents a pool of available molecules

or signaling elements in a resting state (R), such as closed ion

channels or receptors, synaptic vesicles in the readily releasable

pool (RRP), or an inactive enzyme in a biochemical cascade. The

second state is the active state (A), which is the output of

the system. This state would represent open ion channels, acti-

vated receptors, or an active enzyme or neurotransmitter in the

synaptic cleft released from vesicles. The third and fourth states,

I1 and I2, represent inactivated states, such as inactivated ion

channels, desensitized receptors, or depleted pools of synaptic

vesicles. Each signaling element can occupy one of the states,

and the rate of transition between the states is governed by

a set of first-order differential equations (see Experimental

Procedures). Rate constants are either fixed or vary in time by

being scaledmultiplicatively by an input. The coupling of an input
Neuron 73, 1002–1015, March 8, 2012 ª2012 Elsevier Inc. 1003
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Figure 2. The LNK Model

(A) A train of impulses that changed from low- to

high-amplitude is shownasan input,u(t), presented

to a first-order kinetic model with four states.

Numbers indicate rate constants for transitions

between the resting (R), active (A), and inactivated

states, (I1 and I2). The rateconstantbetween resting

and active states ismodulated by u(t). The output is

the occupancy of the active state (A(t)).

(B) The LNK model. The input, s(t), is convolved

with a linear temporal filter, FLNK(t), and then

passed through a static nonlinearity, NLNK(g), that

does not change with contrast. The output of

the nonlinearity, u(t), controls two rate constants

in the kinetics block, one that leads to the active

state and one that accelerates recovery from the

inactivated state, I2. Other rate constants are fixed,

and the output of the model r0ðtÞ is the active state.

(C) The membrane potential of an adapting ama-

crine cell compared to the LNK model output for a

transition to low contrast (left) and to high contrast

(right).

(D) The LNK model compared to the amacrine cell

response for three repeats of an identical stimulus

sequence.

(E) The distribution of the absolute difference in

membrane potential between responses to an

identical stimulus compared to the distribution of

the difference between the model output and

membrane potential responses. Results are

combined for six cells with three repeated

responses across the entire recording.

Neuron

The Computational Structure of Variance Adaptation
to the system is analogous to a reaction rate that depends on the

concentration of the reactants. For example, the change in the

active state is described by

dA

dt
= inflow� outflow= kauðtÞRðtÞ � kfiAðtÞ; (Equation 1)

where R(t) and A(t) are the occupancies of the resting and active

states, ka and kfi are constants, and u(t) is the input that scales

the activation rate constant, ka.

When a train of pulses of either small or large amplitude drives

the four-state system, the larger input produces output pulses

with a smaller gain and also increases the baseline (Figure 2A).

To produce dynamics with both fast and slow timescales, the

fourth state (I2) couples to the first inactivated state (I1), using

slower rate constants. As a result, a slow shift in baseline occurs

following a change in the amplitude of the input. The rate

constants in the four-state model are the rates of activation

(ka), fast inactivation (kfi), fast recovery (kfr), slow inactivation

(ksi), and slow recovery (ksr).

Although this four-statesystemcanproduceadaptivechanges,

it lacks the temporal filtering and selectivity of retinal neurons. At
1004 Neuron 73, 1002–1015, March 8, 2012 ª2012 Elsevier Inc.
a fixed mean luminance, photoreceptors

are nearly linear. Strong rectification first

appears in amacrine and ganglion cells,

coincidingwith strong contrast adaptation

(Baccus and Meister, 2002; Kim and

Rieke, 2001; Rieke, 2001). This threshold
likely arises from voltage-dependent calcium channels in the

bipolar cell synaptic terminal (Heidelberger and Matthews,

1992), a point that would occur prior to adaptive changes in

sensitivity in the presynaptic terminal or postsynaptic membrane.

Thus, we combined the adaptive system with a linear-nonlinear

model, yielding a system with a linear temporal filter, a static

nonlinearity, and an adaptive kinetics block (Figure 2B). In this

linear-nonlinear-kinetic (LNK) model, the kinetics block contrib-

utes both to the overall temporal filtering and the sensitivity of

the system, making these properties depend on the input. Thus,

the linear filter (FLNK) and nonlinearity (NLNK) of the LNK model

are not the same as the filter and nonlinearity, FLN and NLN,

respectively, in an LN model fit to the entire response. To couple

the initial linear-nonlinear system to the kinetics block, the

output of the nonlinearity, u(t), scales one or two rate constants.

Although this means that the transition rate is proportional to the

nonlinearity output, a higher-order dependence—such as the

dependence of vesicle release on a higher power of the calcium

concentration—can be captured in the nonlinearity itself.

We fit LNK models using a constrained optimization algorithm

(see Experimental Procedures). The filter and nonlinearity were
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Figure 3. The LNK Model Captures Retinal

Contrast Adaptation

(A and B) Linear-nonlinear models were computed

for the membrane potential response of a ganglion

cell during Hearly, Hlate, Learly and Llate. LN models

were also fit to the output of an LNK model. Left,

linear filters, FLN(t), for all low (8%) or high contrast

(35%), fit to the recording and LNK model. Right,

static nonlinearity, NLN(g), for all four intervals fit to

the recording and LNK model.

(C) The change in the peak of the linear temporal

filter, FLN, of an LN model fit to the membrane

potential or to the LNKmodel. Results for (C–F) are

averaged across 12 amacrine and ganglion cells.

(D) Average sensitivity computed as the average

slope of the nonlinearity, NLN, of an LN model fit to

the response or to the LNK model as a function of

contrast.

(E) The normalized change in average membrane

potential after a contrast switch, compared

between a cell’s response and its LNK model.

Normalization was performed by subtracting the

mean and dividing by the standard deviation of the

entire recording.

(F) The normalized average membrane potential

at the end of a contrast period for each cell’s

response and its LNK model as a function of

contrast. Error bars indicate standard error.
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reduced to a set of 20 parameters, and the kinetics block

contributed 5 parameters. The activation rate ka was scaled by

the input, and most other rate constants were fixed. In addition,

to capture the contrast dependence of the rate of slow adapta-

tion, the input scaled the rate of slow recovery ksr. Themotivation

for scaling of the slow rate constant by the input is discussed

further below.

Accuracy of the LNK Model
We compared the LNK model output to the cell’s membrane

potential response across the entire recording (300 s). The

model accurately captured the response at all times, including

contrast transitions at both decreases and increases in contrast

(Figure 2C, Figure S1). The correlation coefficient between the

model and the response was 88 ± 4% (90 ± 2% for bipolar

cells [n = 5], 89 ± 4% for amacrine cells [n = 9], and 86 ± 4%

for ganglion cells [n = 7]), mean ± SEM. We then compared

these values to the intrinsic variability of each cell by repeating

a stimulus sequence two to three times. The accuracy of the

model was nearly that of the variability between repeats of the

stimulus, which was 90 ± 5% (92 ±2% for bipolar cells, 92 ±

4% for amacrine cells, and 89 ± 6% for ganglion cells) (Figures
Neuron 73, 1002–101
2D and 2E). Thus, the LNK model accu-

rately captured the membrane potential

response to changing contrast for inner

retinal neurons.

TheLNKModelCapturesAdaptation
We then assessed how well the LNK

model captured adaptive properties by

fitting LN models to both the data and to
the LNK model. Examining the temporal filters of these LN

models, the LNK model captured the fast change in temporal

processing between low and high contrast (Figure 3A). In addi-

tion, the LNKmodel captured fast changes in sensitivity between

low and high contrast as well as fast and slow changes in base-

linemembrane potential (Figure 3B). Across a population of cells,

the LNK model closely matched the temporal filtering and

average overall sensitivity of the cell’s response across the full

range of contrasts (Figures 3C and 3D). After a contrast step,

the LNK model matched the fast change in average membrane

potential of a cell across a range of contrast transitions (Fig-

ure 3E). Finally, the LNK model matched slow changes in base-

line as the model matched the near steady-state average

membrane potential value of a cell at the end of 20 s of constant

contrast (Figure 3F). Thus, the LNK model accurately captured

both the membrane potential response and all adaptive proper-

ties of inner retinal neurons.

How an LNK System Adapts to the Variance
Figure 4 illustrates how the dynamics of the LNKmodel generate

variance adaptation. The initial linear filter selects a particular

feature of the stimulus. Then, the nonlinearity rectifies the signal,
5, March 8, 2012 ª2012 Elsevier Inc. 1005
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Figure 4. Internal Dynamics of the LNK Model

(A) LNK model of an adapting ganglion cell. Colored

arrows and states indicate the output of different stages

and state occupancies shown in (B).

(B) Top to bottom, the output of the linear filter, the output

of the nonlinearity, and the state occupancies for each of

the four states. Left to right, a transition to high contrast,

a transition to low contrast, and segments of high and low

contrast at an expanded timescale.

Neuron

The Computational Structure of Variance Adaptation
such that when the contrast changes, the output of the nonline-

arity changes not only its standard deviation but also its mean

and other statistics. Adaptation is then accomplished by the

action of the kinetic model.

When the contrast increases, the input to the kinetics block

increases its mean value, thus increasing the activation rate

constant. As a result, the increase in contrast automatically

accelerates the response. The resulting increase in the occu-

pancy of the active state depletes the resting state. We define

the gain of the kinetics block as the change in the occupancy

of the active state, DA, caused by a small change in the input,

Du. In Supplemental Information, we derive that DA is simply

a product of the input, Du, scaled by the rate constant, ka, and

the resting state occupancy, R,

DADu

Du
= kaRðtÞDt: (Equation 2)

Thus, the instantaneous gain of the kinetics block is propor-

tional to the resting state occupancy. As such, depletion of the

resting state decreases the gain (Figure 4B). As the resting state,

R, depletes, the inactivated states increase in occupancy at

different rates. These inactivated states act as a buffer, control-
1006 Neuron 73, 1002–1015, March 8, 2012 ª2012 Elsevier Inc.
ling the occupancy in the resting and active

states. In particular, the slow inactivated state,

I2, increases gradually, producing the slow

decay in offset seen in the active state. At the

transition to low contrast, occupancy of I2 slowly

decreases as the resting state recovers.

A key function of the first inactivated state, I1,

was revealed by attempting to fit models using

other network topologies. We found that when

slow rate constants existed on the return path

from the active back to the resting state, the

fast and slow kinetics became coupled and

it was not possible to accurately produce

dynamics with both time scales (Figure S2).

Thus, state I1 served to generate distinct fast

and slow properties. As previously observed,

changes in temporal processing occurred

quickly, most changes in gain occurred at a

fast timescale, and changes in offset occurred

with both fast and slow timescales (Baccus

and Meister, 2002). At a fine timescale (Fig-

ure 4B, right), membrane potential responses

are asymmetric, having a faster rise rate than

decay. The LNK model generates these

responses by first producing brief transients as
the output of the nonlinearity. These transients are then filtered

by a combination of exponentials produced by the kinetics block

(see Figure 7), yielding an asymmetric response.

Fast and slow offsets opposed each other, such that slow

offsets produced a homeostatic regulation of the membrane

potential (Baccus and Meister, 2002). This effect can be under-

stood as an action of fast and slow subsystems in the kinetics

block. At the transition to high contrast, the increase in the

average activation rate constant leads to a fast equilibration

among the first three states. This increases the mean occupancy

of both the active and inactivated state I1 occupancy in the

resting state. The increase in the occupancy of I1, however,

then leads to a slow equilibration involving the second

inactivated state, as I2 slowly steals occupancy from the other

states. Thus, the architecture of a fast subsystem linked to

a slower reservoir leads to the transient offset, which is then cor-

rected homeostatically toward an intermediate steady-state

value.

Slow adaptation is temporally asymmetric, such that adapta-

tion to a contrast increase proceeds faster than to a contrast

decrease. This property is consistent with known principles of

statistical estimation, such that it takes longer to accurately
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Figure 5. LNK Models of Different Retinal Neurons

(A) LNK model of an Off bipolar cell with three kinetic

states.

(B) LNK model of an Off transient amacrine cell.

(C) Two-pathway LNK model of an On-Off ganglion cell fit

together in a single model. The outputs of the two path-

ways are summed. For this cell, the relative weighting of

the Off pathway was 8.5 times that of the On pathway.

(D) Rate constants for the kinetics block for different cell

types and pathways. Shown are averages for 5 Off bipolar

cells, 7 Off pathways from Off or On-Off amacrine cells,

5 Off pathways from Off or On-Off ganglion cells, and 12

On pathways from On-Off amacrine or ganglion cells.
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estimate the variance of a distribution when the variance

decreases (DeWeese and Zador, 1998). However, this asymme-

try did not arise with fixed slow rate constants of inactivation, ksi,

and recovery, ksr. To achieve this property, it was necessary to

scale the rate constant ksr that controlled the transition between

I2 and I1 by the nonlinearity output u(t), such that different

contrasts produced slow adaptation with different time

constants.

An additional aspect revealed by the model is the average

occupancy of each of the states, which is controlled by the

rate constants. At all times, �99% of the total occupancy was

in the inactivated state, I2. Thus, a small fractional change in I2
results in a larger change in the resting and active states. Bio-

physically, if a signal is carried by a molecule or synaptic vesicle,
Neuron 73, 100
a very large part of the system is unavailable to

transmit the signal.

Adaptation in Different Cell Types
Many bipolar cells adapt to contrast but show

smaller changes in response properties than

amacrine or ganglion cells (Baccus and Meister,

2002; Rieke, 2001). The bipolar response ap-

peared saturated because negative deflections

were larger than positive deflections (Figure

S3A). This corresponds to saturation in the

nonlinearity of an overall LN model NLN, as has

been observed previously (Baccus and Meister,

2002; Rieke, 2001). However, examining the LNK

model for an adapting bipolar cell (Figure 5A), we

found that the nonlinearity, NLNK, was placed

symmetrically around the mean of the output,

and did not, in fact, rectify the signal. Instead,

this saturation can be explained by the kinetics

block producing fast adaptation such that, upon

a positive deflection, the gain of the kinetics

block quickly drops (Figure S3A). Thus, although

the saturating response of the cell at high con-

trast appears to be caused by an instantaneous

nonlinear process, it is in fact due to a fast,

time-dependent nonlinearity that canbe resolved

by the parameters of the adaptive kinetics block.

Compared with bipolar cells, transient ama-

crine cell responses are more rectified and
show greater adaptation (Baccus and Meister, 2002). In the

LNK model, the midpoint of the bipolar cell nonlinearity (NLNK)

was at 7 ± 5% (n = 5) of the input range below themean. For ama-

crine and ganglion cells, however, the nonlinearity midpoint was

26 ± 2% (n = 12) above the mean input, thus indicating greater

rectification than in bipolar cells (Figures 5B and 5C). In the

kinetics block, the path of recovery from the active state back

to the resting state (A to I1 to R) was slower than that of bipolar

cells, such that the slowest rate constant was 43.0 ± 1.8 (n = 5)

for bipolar cells but 5.0 ± 0.7 (n = 12) for amacrine and ganglion

cells. Finally, amacrine and ganglion cells required a second

inactive state I2 linked by slow rate constants.

On-Off ganglion cells were fit using a two-pathway LNKmodel

(Figure 5C). The Off pathway was similar to that of adapting Off
2–1015, March 8, 2012 ª2012 Elsevier Inc. 1007
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Figure 6. Variance Adaptation Is Adaptation to the Mean of a

Rectified Signal

(A) Top, the nonlinearity output, u(t), at low and high contrast. Rows 2–4, u(t)

with the mean, standard deviation, or skewness held constant, and with other

statistics varied as in the control case.

(B) Gain as a function of contrast with the different statistics held constant. Gain

wasmeasured as the average occupancy of the resting state,R(t) (Equation 2).

(C) Top, the control nonlinearity output, u(t), at low and high contrast. Rows

2–4, u(t) with the mean, standard deviation, or skewness varying as in the

control case, and with the other statistics held constant.

(D) Gain as a function of contrast with the different statistics changing alone.
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amacrine cells in its threshold and kinetic parameters. Com-

pared with the Off pathway, the On pathway had a slower filter

(as expected), a higher threshold, and different kinetics. The

two pathways with separate initial stimulus features and inde-

pendent adaptive properties likely contribute to the multidimen-

sional stimulus sensitivity observable in retinal ganglion cells

(Fairhall et al., 2006).

The different cell types and the On and Off pathways had

distinct kinetic parameters (Figure 5D). The precision of these

parameter estimates was generally to within 30% (Figure S3B).

We examine below how these different parameters give rise to

different adaptive behavior.

Adaptation Is Controlled by the Mean of a Rectified
Signal
Because all adaptive properties were localized to the kinetics

block, we examined the model to determine which statistics of

the internal stimulus representation caused adaptation in the
1008 Neuron 73, 1002–1015, March 8, 2012 ª2012 Elsevier Inc.
kinetics block. Previous results suggest a correspondence

between threshold and adaptation because sustained amacrine

cells, which are more linear, also show much less adaptation

than transient amacrine cells and ganglion cells (Baccus and

Meister, 2002). Because the threshold nonlinearity changes the

statistics of the input, we altered the direct input to the kinetics

blocks by taking the nonlinearity output and changing its

mean, standard deviation, or skewness. To assess adaptation

in each case, wemeasured the average gain of the kinetics block

as the average occupancy of the resting state (see Equation 2).

We first kept constant either the mean, standard deviation, or

skewnesswhile allowing the other statistics to varywith contrast,

as in the control condition. Even though the standard deviation or

skewness were kept constant, gain changes were at least as

large as occurred in the control condition (Figures 6A and 6B).

However, when we kept the mean input constant and varied

other statistics, adaptive changes in gain were abolished.

Next, we changed the mean, standard deviation, or skewness

and kept the other statistics constant across contrast. In this

case, we found that changing the standard deviation or skew-

ness did not cause adaptation and, in fact, produced the oppo-

site effect, causing the gain to increase with increasing standard

deviation (Figures 6C and 6D). However, allowing themean alone

to vary caused changes in gain even larger than those that

occurred in the control condition.

These results show that changes in the mean input to the

kinetics block are both necessary and sufficient to produce

adaptation. Thus, in generating adaptation, a key function of

the nonlinearity is to transform a change in stimulus contrast

into a change in the mean value of the signal. Adaptation to vari-

ance can be explained by adaptation to the mean value of a

rectified signal.

Thus, from analysis of themodel, we propose that bipolar cells

and sustained amacrine and ganglion cells, all of which have less

of a threshold in their response, experience less adaptation

because the output of this threshold changes its mean value

less in response to a change in contrast. In comparison, transient

amacrine and ganglion cells with a sharp threshold (Figures 5B

and 5C) experience greater changes in the mean value of the

input to the kinetics block.

Instantaneous Change in Kinetics, Delayed Change
in Gain
Fast adaptation consists of nonlinear response properties that

unfold on a timescale similar to the integration time of the

response. To measure fast adaptation, previous studies used

LN models computed in small time intervals to assess how

adaptation changed the response near a contrast transition

(Baccus andMeister, 2002). This approach, however, has limited

temporal resolution due to the amount of data that can be

collected in such small intervals.

In the LNK model, because all adaptive properties are local-

ized to the kinetics block, we assessed how signal transmission

of this stage changed at different times during the contrast

transition. Because adaptation of the kinetics block is controlled

by the mean of the input u(t), we simulated a contrast transition

by producing a step change in u(t). Then, we assessed the

impulse response of the kinetics block alone by adding a small
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Figure 7. Change in Kinetics Precedes the Change

in Gain

(A) Top, input to the kinetics block, u(t), consisting of brief

impulses, Du, added at different times relative to a change

in the baseline value of u(t). Middle, impulse response,

Fk(t), of the kinetics block resulting from Du at different

times relative to an increase in u(t). Bottom, Fk(t) at

different times relative to decrease in u(t).

(B) Top, membrane potential and LNK model of an

amacrine cell at a transition from 35% to 5% contrast.

Impulses Du were added to the kinetics block input u(t) at

different times, separated by 10ms relative to the contrast

transition. Middle, time constant of Fk(t) at different times

relative to the change in contrast. This time constant was

measured as a single exponential fit to Fk(t). Bottom, gain

measured as the amplitude of Fk(t) at different times

relative to the change in contrast.

(C) For the contrast transition shown in (B), small impulses,

Ds, were added to the stimulus, s(t), and presented to

the LNK model at different times, separated by 10 ms

relative to the contrast transition. The resulting change in

the model output, r0ðtÞ, averaged over many stimulus

sequences of s(t), was taken as the impulse response to

Ds. Top, the time to peak of the impulse response to Ds.

Bottom, amplitude (rms) of the impulse response to Ds.
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incremental impulse Du at different times relative to the step

transition. We measured the change in the active state AD(t) re-

sulting from the added impulse. This change was a decaying

exponential whose amplitude and time constant depended on

the time relative to the contrast transition (Figure 7A). We found

that the average temporal filtering of the kinetics block to an

incremental input changed instantaneously at the increase in

mean input, whereas the gain lagged several hundred ms.

We then measured changes in the impulse response of

the kinetics block generated by visual input that was presented

to the beginning of the model. We chose a segment of data

near a contrast transition accurately fit by the model (Figure 7B)

and measured the impulse response near the contrast transition

by presenting a small Du to the kinetics block at different

time points. We then measured the time constant and gain

from the resulting change, AD(t), in the active state. From the

model, we found that both the time constant and the instanta-

neous gain fluctuated quickly in the high contrast environment.

Thus, even at a fixed contrast, the gain and temporal filtering

change continually depending on the recent input sequence.

Although an LN model is a reasonable approximation to inner

retinal neurons at a fixed contrast (Chichilnisky, 2001), the LN

model fails to capture this ongoing adaptation of the response

(Figure S4).

Because the LNK model accurately captures the response

during a contrast transition, we assessed how the overall system

changed its gain and temporal processing at a fine time resolu-

tion. We presented to the first stage of a LNK model small

impulses, Ds, added to different sequences of a white noise

input at all 10 ms intervals relative to a decrease in contrast,

and then measured the resulting incremental response in the

active state. We found that the time to peak of the resulting

response changed within the integration time of the filter but

that the gain lagged up to twice the integration time of the filter

(Figure 7C).
Effects at a contrast transition can be understood in terms of

the dynamics of the kinetics block. When the contrast changes,

rate constants change as soon as the input to the kinetics block

increases. This is because the overall temporal filtering of the

kinetics block is set by the eigenvalues of the system (Luen-

berger, 1979), which are, in turn, a function of the instantaneous

rate constants. Because of the causal relationship between the

rate constants and the state occupancies, after the rate con-

stants change the resting state occupancy then shifts, thereby

changing the gain and the baseline membrane potential. Thus,

in an adaptive system of the type represented in the kinetics

block, the secondary changes of gain and baseline response

necessarily lag the change in the speed of the response, which

limits how fast the system can control its gain in response to

changing signal amplitude.

Different Parameters Generate Different Behaviors
To understand how the different parameters of the LNK model

generated different adaptive behavior, we first examined differ-

ences between Off and On cells. Both cell types change their

gain, but On cells have less of a change in temporal filtering

(Beaudoin et al., 2008). Compared to the Off cell LNK model,

the On cell had a slower filter, a higher threshold in its nonline-

arity, and a different set of rate constants (Figure 5C). To test

whether differences in rate constants yielded the different

adaptive behavior, we measured the impulse response function

of the kinetics block alone.

Because contrast adaptation in the LNK model can be ex-

plained by adaptation in the kinetics block to the mean value

of the input (Figure 6), we represented high and low contrast

by two different mean values and then presented impulses riding

on the two different baselines. We found that the impulse

response of the kinetics block also showed differences between

On and Off cells, with On cells showing little change in temporal

filtering (Figure 8A and 8B). Compared to the Off pathway, the
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Figure 8. Different Kinetic Parameters Give

Rise to Different Adaptation Properties

(A) Left, input to the kinetics block used tomeasure

Fk, consisting of impulses,Du, added to a constant

baseline input, u(t). Middle, a four-state kinetics

block from the Off pathway. Right, Fk at low and

high contrast, and the high contrast Fk rescaled in

amplitude.

(B) Same as (A) for a ganglion cell On pathway.

(C) The change in gain of the kinetics block in panel

(A) between low and high contrast as a function of

two parameters, fast inactivation (kfi) and fast

recovery (kfr). Both parameters were normalized by

the mean activation rate (ka).

(D) The change in the time constant of Fk at low and

high contrast as a function of kfi=ka and kfr=ka.

(E) The change in shape of Fk as a function of

kfi=kaand kfr=ka, computed as the area of positive

values of Fk divided by the total area between the

curve and zero.

(F) Different parameter values of kfi=ka and kfr=ka
for different cell types.
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model of the On pathway showed differences in the rates of

fast inactivation, kfi, and fast recovery from inactivation, kfr
(Figure 5D).

We further explored the space of these two parameters (kfi and

kfr) by measuring the impulse response at different contrasts for

many different parameter values, thereby mapping the effects of

kfi and kfr on changes in gain, temporal response, and the

biphasic temporal response. Changes in gain resulted when

either fast inactivation or recovery were slow compared to acti-

vation, thus leading to depletion of the resting state during

increased activation (Figure 8C). Considering a simplified

three-state system at equilibrium, the inflow and outflow of all

states are the same (i.e., RNuNka = ANki = INkr), where uN is

a steady input to the kinetics block. The equilibrium occupancy

of the resting state can then be solved as

RN = ð1+ uNc1Þ�1
; (Equation 3)

where c1 = ðka=ki + ka=krÞ. Thus, when either ki or kr are small

compared to ka, c1 becomes large and weights the effect of

the input uN more heavily. This changes the resting state occu-

pancy and, therefore, the gain (see Equation 2) significantly with
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contrast. This relationship allows the

adaptive change in gain to be approxi-

mated analytically directly from the rate

constants of the model (Figure S5A).

Contrast-dependent changes in tem-

poral filtering occurredwhen fast inactiva-

tion (kfi) was prolonged but such changes

were unaffected by the rate constant of

fast recovery (kfr) (Figure 8D). Because of

the lack of dependence on kfr, we consid-

ered a simplified system of three states

with no return pathway, R/
uka

A/
kfi

I. We

can derive that the impulse response of

this system is a weighted sum of two

exponentials (see Supplemental Experi-
mental Procedures), one with a time constant, uNðsÞka, that

depends on the contrast (s), and one with time constant, kfi,

that is independent of contrast. The weighting between these

two exponentials is set by a constant that depends on the

contrast and the inactivation rate such that when kfi=ka is small,

the variable exponential is weighted more heavily. We can use

this understanding to predict the adaptive change in temporal

filteringdirectly from the rate constants of themodel (FigureS5B).

Finally, the change in differentiation of the temporal filter was

produced primarily by fast recovery, with some dependence

on fast inactivation as well (Figure 8E). By comparing the state

occupancies to the impulse response, Fk, we saw that Fk was

more biphasic when the increase in the inactivated state I1 ex-

ceeded the depletion of the resting state (Figure S5C). Conse-

quently, when recovery was slow, as compared to the steps of

activation and inactivation, there was transiently a higher level

of inactivation, causing an undershoot in the level of activation.

Thus, the three rate constants give flexibility to a system to

control its gain and temporal filtering as a function of contrast,

although not every behavior is possible with this type of simple

system.
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We then examined the actual model parameters of different

cell types and found that different cells occupied different

regions of this parameter space, such that On and Off pathways

were distinct from each other and also from bipolar cells (Fig-

ure 8F). Bipolar cells, having a faster kfi and kfr, showed smaller

changes in gain and temporal filtering. Off cells with a slower

kfi showed greater gain changes and changes in the time to

peak of their overall temporal filter. On cells with a faster kfi but

slower kfr showed a substantial gain change and less change

in the speed of the temporal filter but a substantial change in

the temporal differentiation of the filter. By choosing different

rates of inactivation and recovery, simple kinetic systems can

produce different adaptive behavior.

Correspondence of Kinetic Properties with Those
of Synaptic Vesicle Pools
A number of potential mechanisms have properties that change

their gain with activity, including ion channel inactivation,

synaptic depression, and receptor desensitization. For AMPA-

type glutamate receptors, desensitization and recovery are

both rapid (<20 ms) (DeVries, 2000) and, thus, could not account

for all parameters of the kinetics block. Kainate receptors do

a have longer time constant of recovery (�1.5 s) but, again, could

not account for the rate constants of slow inactivation and

recovery in our model. Desensitization could, however, con-

tribute a faster component of adaptation. An extension of the

current model that accounted for desensitization would be to

add a second kinetics block controlled by the output of the first.

We examined whether the kinetic parameters of the LNK

model correspond to the properties of synaptic vesicle pools.

Comparing the parameters of the bipolar-cell kinetics block to

previouslymeasuredparameters of conephotoreceptor synaptic

release under conditions that cause depression of photoreceptor

synaptic release, replenishment of vesicles occurs with a time

constant of �250 ms (Rabl et al., 2006). This is substantially

longer than the time constants of the bipolar-cell kinetics block,

whichwere < 40ms. In contrast to bipolar cell synaptic terminals,

a large fraction of vesicles (�85%) in the photoreceptor terminal

are available for release (Rea et al., 2004). Thus, under the stim-

ulus conditions chosen here, vesicle depletion may not play

a major role in bipolar cell contrast adaptation. A postsynaptic

mechanism has been proposed for contrast adaptation in bipolar

cells that require a change in intracellular calcium (Rieke, 2001).

Although this mechanism is unknown, the kinetic parameters

measured here serve as an important quantitative comparison

for such candidate mechanisms.

However, we found a different result when comparing the

kinetic properties of amacrine and ganglion cells to those of

synaptic vesicle pools. Using the terminology of (Rizzoli and

Betz, 2005), three pools include a RRP, a recycling pool, and

a much larger reserve pool. We found that this framework can

map directly onto the kinetics states of the LNK model. The

resting state, R, corresponds to a state where sites in the recy-

cling and RRP are filled. In the active state, A, fusion has

occurred. The two inactivated states represent depletion of the

two smaller pools. In the inactivated state, I1, a site in the RRP

is depleted, and in state I2, a site in the recycling pool that refills

the RRP is depleted. The activation rate constant ka corresponds
to the rate of immediate release, and fast inactivation kfi corre-

sponds to the rate of depletion of the RRP. The fast recovery

rate constant kfr corresponds to the rate of refilling of the RRP

from the recycling pool. Slow inactivation, ksi, represents the

rate of depletion of the recycling pool, and slow recovery, ksr,

then represents the rate of recruitment from the reserve pool to

the recycling pool.

To test whether the kinetics block parameters corresponded

quantitatively to those of synaptic vesicle pools, we compared

the parameters of the On pathway of nine amacrine and ganglion

cells to those properties previously measured for On bipolar cell

synaptic release. The rate of maximum release from the RRP

depends on the membrane potential and, under physiological

conditions, it is less than 120 s�1. (Burrone and Lagnado,

2000). Our rate constant of activation (ka) has a maximum value

of 39 s�1 ± 7. Using published measurements, this would be

generated by a presynaptic depolarization of ��32 mV within

the expected physiological range of bipolar cells.

Two previously measured fast time constants of release

differed by a ratio of 4–10, the slower of which is less than

0.5 s (Burrone and Lagnado, 2000). The three fast rate constants

of our kinetics block will produce two fast time constants. By

applying an impulse to the kinetics block, we found these to be

23.5 ± 4.1 ms and 197.6 ± 37.4 ms, differing by a ratio of 8.4 ±

0.8. The maximum rate constant of refilling of the RRP from the

recycling pool has been measured to be 1.3 s�1. Correspond-

ingly, the rate constant of fast recovery, kfr,was found to be

1.4 ± 1.8 s�1, although in our case this rate was fixed and did

not depend on the input. The maximum rate constant of

refilling the recycling pool from the reserve pool has been found

to be calcium-dependent and has been measured as 0.0013

(Gomis et al., 1999). Correspondingly, the rate constant of

slow recovery, ksr, was input-dependent, with a maximum of

0.0018 ± 0.0010 s�1. To compare the rate of depletion of the re-

cycling pool with our rate constant, ksi, we considered that the

ratio of the depletion and refilling rates of the recycling pool

(our ksi and ksr, respectively) will control the fractional occupancy

of the reserve pool. The reserve pool has been estimated to hold

99.30% of vesicles (Neves and Lagnado, 1999), compared with

99.14% ± 0.25 estimated from the fractional occupancy of the

kinetic states of the LNK model.

Although different rate constants of the LNK model can span

a factor of > 10,000, they nonetheless correspond to previously

measured values. Thus, starting directly from measured data of

the membrane potential undergoing variance adaptation, the

parameters of an accurate adaptive model match the known

biophysical properties of synaptic release.

DISCUSSION

We have shown that retinal contrast adaptation of the sub-

threshold potential corresponds closely to a model consisting

of a nonadapting linear-nonlinear system followed by an adap-

tive first-order kinetics system. The LNK model accurately

captures the membrane potential response, fast changes in

kinetics, fast and slow changes in gain, fast and slow changes

in offset, temporally asymmetric responses, and asymmetric

time constants of adaptation. Because our goal was not only to
Neuron 73, 1002–1015, March 8, 2012 ª2012 Elsevier Inc. 1011
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fit the response, but also to draw general conclusions about how

adaptation can be implemented, we chose an adaptive compo-

nent that has a strong correspondence to biophysical mecha-

nisms. This allowed us to use the model to explain how each

adaptive property can be produced by a single simple system.

Retinal ganglion cells were modeled using one or two parallel

pathways, each with a single LNK stage. However, because

bipolar, amacrine, and ganglion cells show adaptation, a more

accurate circuit model would consist of two sequential LNK

stages and parallel pathways to include amacrine transmission.

Why does only a single LNK stage accurately capture ganglion-

cell responses? Compared to the strong adaptation of ganglion

cells, bipolar cell contrast adaptation to a uniform field stimulus

is weak in the intact retina (Baccus and Meister, 2002), as

opposed to when much of the inhibitory surround is removed

in a slice preparation (Rieke, 2001). If this first adaptive stage is

missing in a model, then the input to the second stage will

have a greater change in variance across contrasts. However,

this change in variance will be reduced by the stronger adapta-

tion in the retinal ganglion cell stage, such that in the model,

strong adaptation in the kinetics block will compensate for the

absence of a weak initial adapting stage. Amacrine cells that

have response properties that are similar to their target ganglion

cells (Baccus et al., 2008) may be accounted for by a single-

model pathway that represents the combined parallel effects

of excitation and inhibition.

Components of the LNK Model
In the model, the linear filter conveys an approximation of the

stimulus feature encoded by the cell, and the nonlinearity

conveys the strength of that feature. We chose the filtering stage

to have a single stimulus dimension because it represents the

more simple processing at the level of the photoreceptor or

bipolar cell soma, as opposed to more complex features found

in ganglion cells (Fairhall et al., 2006). The filter has a less direct

correspondence to a biophysical mechanism, representing the

combining effect of signal transduction and membrane and

synaptic properties. For the nonlinearity, it is expected that the

voltage dependence of calcium channels is a major contributor.

These are, in fact, not instantaneous, although their kinetics are

sub-millisecond (Mennerick and Matthews, 1996) and thus are

effectively instantaneous at the timescale that we modeled. A

more biophysical model would also translate this approximation

into a kinetic model.

In the model, separate control over the internal mean and

higher-order statistics allowed us to conclude that adaptation

depends on the mean input to the kinetics block (Figure 6). We

therefore predict that adaptation at the bipolar synaptic terminal

depends only on the mean value of the internal calcium concen-

tration. However, in an experiment, an attempt to separately

control themean and variance of the bipolar membrane potential

or calcium concentration using visual stimuli would produce

luminance adaptation, which can occur in as little as 0.1 s (Baylor

and Hodgkin, 1974). A definitive experimental test of the predic-

tion that the bipolar cell terminal adapts to the mean of the recti-

fied membrane potential would bypass photoreceptors, directly

manipulating the membrane potential or calcium concentration

at the synaptic terminal.
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Previous results indicate that adaptation to statistics beyond

mean luminance is controlled primarily by standard deviation

(Bonin et al., 2006). Our finding that contrast adaptation is

controlled by the mean of an internal variable is not in conflict

with this result. Because the initial filter combines multiple

samples from the stimulus, due to the central limit theorem this

will reduce the effects of higher-order moments of the stimulus,

making the filtered stimulus more Gaussian. Thus, the standard

deviation of the stimulus will have the largest control over the

mean signal after it passes through the threshold nonlinearity.

Because thresholds are common in the nervous system, it is

likely that a signal with changing variance will be transformed

to a signal with a changing mean, giving rise to the commonly

observed properties of variance adaptation.

In the model, changes in the timescale of slow adaptation are

produced by the variable rate constant of slow recovery, ksr,

which we found to be proportional to the contrast. Although

our studies used a fixed time interval, this timescale of adapta-

tion can change to match the timescale of changes in the

stimulus contrast (Wark et al., 2009). Such plasticity of adaptive

timescale would not automatically occur in our current model

because such behavior would require ksr to depend on the time-

scale of contrast changes. If, as we propose, changes in ksr
reflects the calcium dependence of slow vesicle mobility (Gomis

et al., 1999), this would predict that this mechanism reflects an

inference about the recent timescale of changes in stimulus

contrast.

Sites of Luminance and Contrast Adaptation
Our stimuli had a constant mean intensity and, thus, avoided

luminance adaptation, which appears to be independent from

contrast adaptation (Mante et al., 2005). Considering the source

of this independence, we observed that the initial linear filter for

amacrine and ganglion cells was strongly biphasic, transmitting

little information about the mean luminance. Thus, one would

expect that most luminance adaptation occurs at an earlier

stage, whereas contrast adaptation would occur only after the

threshold nonlinearity. However, at lower luminance the bipolar

cell filter is more monophasic, transmitting more information

about the mean luminance (Burkhardt et al., 2007). Accordingly,

at low intensities, the bipolar cell terminal in the primate cone

pathway does adapt to the mean luminance (Dunn et al.,

2007). Because our results indicate that contrast adaptation is

based on the mean signal at the bipolar cell terminal, adaptation

to the mean luminance and contrast of the stimulus may not be

independent at lower luminance.

Modulation versus Intrinsic Adaptation
In principle, adaptive changes can be produced by one parallel

pathway that modulates a second pathway (Mante et al., 2008;

Cook and McReynolds, 1998). Parallel pathways have flexibility,

in that stimuli that cause adaptation can differ from those en-

coded by the immediate response of the cell. This organization,

however, requires additional neural circuitry to generate adapta-

tion. In contrast, fast adaptive properties in the fly visual system

have been captured by a more computational, multiple pathway

model that adapts as an intrinsic aspect of motion detection

(Borst et al., 2005).
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Here, we find that all properties of retinal contrast adaptation

are explained by a model with no such parallel pathway. Instead,

transmission of the signal is naturally coupled to an intrinsic

adaptation of the response, such that the process of transmitting

a signal changes the rate of that transmission and depletes a

store of that signal, leading to a change in temporal filtering,

gain, and offset. Like adaptation to the mean luminance in the

photoreceptor transduction cascade, contrast adaptation corre-

sponds to a model of intrinsic adaptation.

Relationship to Other Models
Other models of contrast adaptation have produced adaptive

changes in sensitivity via a feedback pathway that subtracts

a filtered version of the output signal (Gaudry and Reinagel,

2007; Victor, 1987). The LNK model differs in that the reduction

of gain is produced not by a feedback inhibitory pathway, but

rather by depleting a signal as it is transmitted. This architecture

avoids the need for a feedback inhibitory pathway.

Integrate-and-fire (IF) typemodels qualitatively cause adaptive

gain changes and small changes in temporal filtering (Gaudry and

Reinagel, 2007; Keat et al., 2001; Pillow et al., 2005; Rudd and

Brown, 1997). By comparison, the LNK model captures both

neural responses and all adaptive properties across multiple

contrasts, in particular full changes in kinetics and homeostatic

fast and slow changes in response amplitude. For models

of the IF type, each spike subtracts an afterpotential, causing

refractoriness. However, large afterhyperpolarizations are not

observed in retinal data following spiking (Kim and Rieke, 2001),

and it is not clear howsuch amechanismwould cause adaptation

measured in the subthreshold potential. Integrate-and-fire

models can show similar behavior to kinetic models (Jolivet

et al., 2004) and, thus, could provide a useful approximation for

comparison to models with more direct biophysical significance.

The attraction of simple kinetic systems is that they are both

amenable to analytic solutions and simulation and also have a

correspondence with biophysical mechanisms. The adaptive

properties of kinetic models that represent biochemical pro-

cesses, including neurotransmitter receptors, have recently

been analyzed from a theoretical point of view (Friedlander and

Brenner, 2009). This previouswork showed that first-order kinetic

systems similar to the type discussed here can change their gain

when receptors become unavailable. We extend these theoret-

ical results to show how changes in temporal filtering and offset

can also result from these simple systems. Other theoretical

work has considered biochemical networks of two-state systems

analogous to an enzyme with two different conformations, con-

cluding that at least three such two-state systems are needed

to produce adaptation (Ma et al., 2009). The system we have

considered has fewer overall states but requires a signaling

mechanism with at least three states. Our results highlight the

greater adaptive power of molecules with at least three states,

such as desensitizing receptors or inactivating ion channels.

Toward Further Stages of Adaptation and Natural Vision
In a step toward understanding adaptation in natural scenes, full-

field stimuli reduce the complexity of adaptive behavior, in that

we could fit responses using one or two LNK pathways. More

complex spatiotemporal stimuli will undoubtedly require addi-
tional pathways, such as adaptation to differential motion and

spatiotemporal patterns (Hosoya et al., 2005; Olveczky et al.,

2007). In a simple extension of these results, LNK pathways

would represent different interneurons that adapt independently,

consistent with one concept of how pattern adaptation could

occur (Gollisch and Meister, 2010).
Theoretical Explanations for Biophysical Properties
Variance adaptation embodies several theoretical principles of

efficient coding. The change in gain allows a cell to use its

dynamic range more efficiently (Laughlin, 1989). A change in

temporal filtering and biphasic response helps to increase the

integration time in an environment of weaker and, therefore,

noisier signals (Atick, 1992; Van Hateren, 1993). Slow adaptation

sets the timescale over which the statistics of the stimulus are

measured (Wark et al., 2009). The temporal asymmetry between

adaptation to low and high contrast corresponds to a statistical

limitation in how fast the variance of a distribution can be

measured (DeWeese and Zador, 1998). The LNK model shows

how all of these adaptive principles can be implemented by

microscopic transitions that are common to many biophysical

mechanisms. Furthermore, the model establishes a correspon-

dence between adaptation and depletion mechanisms that

cause a signaling element to become temporarily inactivated

upon its use. Because such depletion mechanisms are prevalent

in the nervous system, this may reflect the widespread advan-

tage for each signal to adapt to its own strength.

The parameters of the adaptive block of the LNK model bear

great similarity to previously measured parameters of vesicle

pools in the bipolar cell ribbon synapse. The correspondence

of the LNK model to both adaptive computations and synaptic

properties allows us to propose computational explanations for

previously measured biophysical properties that have unknown

functional benefits. The small number of vesicles in the RRP

may be required so that release of few vesicles leads to a large

change in gain. The rate constants of depletion and refilling of

the RRP may be regulated differentially in different cells, so as

to control adaptive changes in gain, kinetics, or temporal differ-

entiation. Because we find that the inactivated state I1 is needed

to produce fast and slow subsystems with different adaptive

effects, the presence of the recycling pool may be necessary

so that the effects of fast and slow adaptation are distinct. The

dominance of vesicles in the reserve pool may be a natural

consequence of slow adaptation and necessary for the system

to adapt over a sufficient timescale to measure the mean value

of the synaptic input. The calcium dependence of the rate of

recruitment from the reserve pool may reflect the statistical

need to adapt over a longer time interval when the signal is

weak. Thus, by making explicit the rules governing both the

immediate light response and its adaptation over multiple time

scales, we gain insight into how mechanisms can implement

an adaptive neural code.
EXPERIMENTAL PROCEDURES

Electrophysiology

Intracellular recordings of 10–90 min were performed from the intact sala-

mander retina as described (Baccus and Meister, 2002). Bipolar cells (n = 7),
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adapting transient amacrine cells (n = 9), and ganglion cells (n = 7) were iden-

tified by their flash response, receptive field size, and level in the retina.

Visual Stimulation

A spatially uniform visual stimulus lasting 300 s was projected from a video

monitor. The stimulus intensity was drawn every 30 ms from a Gaussian

distribution with mean intensity, M (�8 mW/m2), and standard deviation,

W (Smirnakis et al., 1997). Contrast was defined as W=M. Contrast changed

every 20 s to a value between 0.05 and 0.35, drawn from a uniform distribution.

The identical stimulus sequence was repeated at least two times.

Linear Nonlinear Models

The linear temporal filter was computed by correlating the stimulus with the

response as described (Baccus and Meister, 2002). The stimulus was

convolved with the filter, yielding the linear prediction g(t),

gðtÞ=
Z

FLNðt � tÞsðtÞdt: (Equation 4)

The filter was normalized in amplitude so that the variance of g(t) and s(t)

were equal,

Z
s2ðtÞdt =

Z
g2ðtÞdt: (Equation 5)

Then, the fixed nonlinearityNLN (g) was calculated by averaging the values of

r(t) over bins of g(t). The LN model output was calculated as

r0ðtÞ=NLNðgðtÞÞ=NLN

�Z
FLNðt � tÞsðtÞdt

�
: (Equation 6)

Because of the normalization of the filter, FLN(t) summarizes temporal pro-

cessing and N(g) captures the sensitivity to the stimulus.

Linear Nonlinear Kinetic Model

The stimulus, s (t), was passed through a linear temporal filter, FLNK(t), and

a static nonlinearity, NLNK(g),

uðtÞ=NLNK

�Z
FLNKðt � tÞsðtÞdt

�
: (Equation 7)

This is identical to an LN model, except that the filter and nonlinearity are dif-

ferent functions. The kinetics block of the model is a Markov process defined by

dPT ðtÞ
dt

=PT ðtÞQðuÞ; (Equation 8)

where P(t) is a column vector of m fractional state occupancies, such

that
P

iPi =1 andQ is anm3m transition matrix containing the rate constants

Qij that control the transitions between states i and j, with Qii = �P
isjQij .

After this differential equation was solved numerically, the output of the

model, r0ðtÞ was equal to one of the state occupancies scaled to a response

in millivolts,

r0ðtÞ=P2ðtÞc+d; (Equation 9)

where c and d are a scaling and offset term for the entire recording.

States and rate constants are defined as

P1 =R Resting Q12 = uðtÞka Activation

P2 =A Active Q23 = kfi Fast inactivation

P3 = I1 Inactivated Q31 = kfr Fast recovery

P4 = I2 Inactivated Q34 = ksi Slow inactivation

Q43 = uðtÞksr Slow recovery:

(Equation 10)

The four state version of this model was

dPTðtÞ
dt

=

0
BB@

_P1ðtÞ
_P2ðtÞ
_P3ðtÞ
_P4ðtÞ

1
CCA=PTðtÞ

0
BB@

�uðtÞka uðtÞka 0 0
0 �kfi kfi 0
kfr 0 �ðkfr + ksiÞ ksi
0 0 uðtÞksr �uðtÞksr

1
CCA:

(Equation 11)
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Some rate constants set to zero were initially allowed to vary in early fits but

their optimal values were found to be near zero. Setting them to zero did not

change the accuracy but did improve the speed of convergence of the model.

For three-state models of bipolar cells, P4ðtÞ= ksi = ksr = 0: Additional details

about the fitting procedure can be found in Supplemental Experimental

Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and five figures and can be found with this article online at doi:10.1016/j.

neuron.2011.12.029.
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