On the optimality of grid cells

Moser et al. 2014

Background

- Grid cells are discovered in Moser et al. 2005 in mEC
- It fires in hexagonal grid like pattern spatially with different phases, spacing and orientation
- Distinct neurons then will fire at different locations and hence form a internal spatial map
- It is believed that the neurons do path integration to update the location

Moser et al. 2005

Theoretical Question

- How does the grid-like formation occur? Fuhs & Touretzky 2006, Burak & Fiete 2009
- Why does the module size increase geometrically? Mathis et al. 2012, Wei et al. 2013
- What are the underlying computational principles of grid cells? Papadimitriou 2016

Setup

- *N* neurons on a circle
- Respond to input $\theta \in [0, 2\pi]$
- And the tuning curve of the *i*th neuron is $f_i(\theta)$

• We assume that
$$f_{(i+1) \mod N}(\theta) = f_i(\theta + \frac{2\pi}{N})$$

Setup

- Given θ , the response $r_i(\theta) = f_i(\theta) + \eta_i$ where η_i is Gaussian noise
- Furthermore, the correlation matrix of the noise is C
- And C_{ij} is only a function of |i j| independent from θ
- Total signal power is bounded i.e. $\dot{f}(\theta)^T \dot{f}(\theta) \le 1$
- Would like to decode $\Delta heta$ from Δr

Fisher Information

- For the decoding to be effective, we want small variance
- Variance is lower bounded by reciprocal of Fisher information by Cramer Rao's theorem $var(\hat{\theta}) \ge \frac{1}{I(\theta)}$
- So we seek to maximize F. I. $\dot{f}(\theta)^T C^{-1} \dot{f}(\theta)$
- Then, $\dot{f}(\theta)$ corresponds to the largest eigenvector of C^{-1}

Solution

• Let λ_k be the smallest eigenvalue of C with eigenvectors

•
$$v_i = \cos((i-1)k\frac{2\pi}{N})$$
 and $w_i = sin((i-1)k\frac{2\pi}{N})$

- So $\dot{f}(\theta) = \alpha(\theta)v + \beta(\theta)v$ where $\alpha^2 + \beta^2 = 1$
- Now let $\alpha(\theta) = \sin(\phi(\theta))$ and $\beta(\theta) = \cos(\phi(\theta))$

• We get
$$\dot{f}(\theta) = \sin(\phi(\theta) + (i-1)k\frac{2\pi}{N})$$

Solution

• By periodicity, we have $\sin(\phi(\theta + \frac{2\pi}{N}) + (i-1)k\frac{2\pi}{N}) = \sin(\phi(\theta) + ik\frac{2\pi}{N})$

•
$$\phi(\theta + \frac{2\pi}{N}) = \phi(\theta) + k\frac{2\pi}{N} + 2n\pi$$
 for some integer *n*

• Let
$$\psi(\theta) : [0, \frac{2\pi}{N}] \to \mathbb{R}$$
. For $\theta \in [0, 2\pi]$, define $\theta' \in [0, \frac{2\pi}{N}]$ and $\theta'' \in \{0, \frac{2\pi}{N}, \cdots, \frac{(N-1)2\pi}{N}\}$ from $\theta = \theta' + \theta''$

• Then $\dot{f}(\theta) = \sin(\psi(\theta') + \theta'')$ is a solution

Other points

- One dimensional grid cells can efficiently compute the displacement with two copies of grid cells with phase orthogonal to each other.
- Two dimensional grid cells cannot generalize immediately unless we assume the fisher information can be maximized axis wise.
- In this case, the reason that two dimensional grid is hexagonal lattices might be of a computation one. You need four copies of grid cells to calculate displacement.

Hexagonal Grid

STDP forms associations between memory traces in networks of spiking neurons

STDP

Bi & Poo 1998

Short Term Plasticity

- Synaptic release probability (calcium)
- Synaptic availability (vesicle in the ready release zone)
- Short term plasticity is proportional to the product of these two
- This helps the network to stabilize

Short Term Plasticity

Postsynaptic

