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A single neuron model with Hebbian-type learning for the connection weights, and with nonlinear internal
feedback, has been shown to extract the statistical principal components of its stationary input pattern
sequence. A generalization of this model 1o a layer of neuron units is given, called the Subspace Network,
which vields a multi-dimensional, principal component subspace. This can be used as an associative memory
for the input vectors or as a module in nonsupervised learning of data clusters in the input space. It is also able
to realize a powerful pattern classifier based on projections on class subspaces. Some classification results for

natural textures are given.

1. Imtroduction

Training strategies of artificial neural networks for
signal processing, pattern recognition and associative
memories belong to one of two basic categories:
supervised and unsupervised. The unsupervised
learning neural networks try to model the space of
input vectors. An essential component is then a
“similarity detector” unit. The present author intro-
duced one such model, the principal component
extractor,! which can be used as a building block in
self-organizing nets.>>* It is based on Hebbian
learning of the connection weights with an extra
nonlinear feedback term which imposes an automatic
constraint on the individual weights. Thus, if the
inputs are suitably bounded, the output from the unit
stays within a given interval even if there is no
saturating nonlinearity at the outputs.

An obvious generalization of the principal compo-
nent unit would be a network of several units with
simulianeous Hebbian learning that implements a
multi-dimensional principal component subspace.
The mathematical algorithm for it was given by the
author in Ref. 5 and a network implementation, the
Subspace Network, was proposed in the unpublished
report.® It is reviewed here. It is a one-layer net of
either linear or nonlinear interconnected units all
sharing the same inputs. The lcarning rule is a
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following way: first, each weight vector is normalized
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to a fixed length; second, the weight vectors of
different units become orthogonal; and third, the
vectors tend to be tuned to the statistically most
important feature dimensions of the inputs. Again,
there is neither any explicit normalization nor ortho-
gonalization for the weight vectors but these effects
are an automatic result of the specific nonlinear
feedback term in the learning rule.

Such a network could function as an associative
memory for its input data. In a pattern recognition
application, several network modules can be used for
supervised learning of preclassified samples or for
nonsupervised learning of data clusters in the input
space. This corresponds to the subspace method of
pattern recognition,”’ recently advocated in Ref. 8,
which was originally motivated by associative memory
neural networks. However, a direct peural network
implementation for the learning subspace classifier
has not been given before.

It seems that recently there has been some renewed
interest in the study of essentially linear networks
which are aiso in the supervised learning category.
They may scrve as a basis for understanding qualita-
tively the behavior of the more efficient nonlinear
networks whose analysis is otherwise difficult. It turns
out that a muiltilayer feedforward net with back-
propagation leaming then reduces to a discriminant
analysis classifier” and in the autoassociative case the
outputs from the hidden layer are the principal
components of the input vector.'™'" Especially the
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latter result is very similar to the one obtained from
the Subspace Network although the starting point for
the training strategy is quite different.

From a mathematical point of view, the learning
algorithms of the networks reviewed in the following
have been presented earlier by the auwthor in the
context of pattern recognition and  signal
processing.>'? Recently Sanger'? has also proposed
network implementations for some of the modifica-
tions and discussed their relationship with the linear
back-propagation network.

2. The Basic Unit

Following Kohonen,” the basic model neuron is
defined as follows (see Fig. 1).

The unit receives n input signals denoted by &;
with i = 1, . .., n, which affect the unit through
connection weights. On the jth unit these are denoted
i =1, ..., n. We assume here that both the
inputs and the weights can attain both positive and
negative continuous values. The inputs and weights
influence the output of the unit, ;, by their linear
cumulative effect

"M"
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This is the integrated effect of the inputs on the unit.
The output of the unit is controlled by a dynamical
equation
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Fig. 1. The basic neuron.

There 7; is the actual output of the unit and y is a
nonlinear leakage effect. The inverse function of y(.),
denoted by o(.), typically has a sigmoidal form. Thus
the short-time stationary output signal from Eq. 2,
n; = o(v;) will be a nonlinear function of the linearly
weighted input signals, as is usually the case in
artificial neuron models.

The time constant of Eq. 2 is very fast as compared
to the time constant of learning in which the weights
u; change. The learning is assumed to take place
according to a Hebbian type conjunction of the inputs
& and the integrated effect of the inputs, v;, with an
extra “forgetting” term:

= [ & i) - (3)

In the simplest case, f(.) might be a constant.
However, quite interesting functions emerge from the
assumption that it depends on the various factors in
the unit, especially on »;. This helps in stabilizing the
weights to a constrained range of values.

3. The Principal Component Analyzer

As a simple but nontrivial special case of Eq. 3,
assume that f{.) has the form proposed by the author
in Ref. 1:

ﬁ"'p & .F‘-n) BV;F'): - 1)

with /3 constant, which results in the learning equation
dpj;

2 = ek — Brip) - ©

Each weight u; tends to grow according to its input
&, but the growth is controlled by an internal
feedback in the unit. The feedback gets stronger with
a stronger v; .

Changing 10 a vector-matrix notation in which the
column vectors m;, x are

m, = (ﬂjl 3. :“';'n)T: x=(£,... 3§u)rv(6)
it holds that #{¢) = m(t)T x (¢) (index j is dropped for
the time being) and Eq. 5 becomes

'S

{n

dm
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)]

This is completely equivalent to the original learning
equation (5). -
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Sometimes it can be assumed that the input vecior
stays stationary through the learning period, i.e., the
values are picked from an n-dimensional distribution
characterizing the variations within some signal class.
Then a statistical analysis becomes possible. Taking
averages in Eq. 7 (for details of the averaging process,
see Ref. 12} and redefining the constants o and § to
be the same for simplicity (this is not a crucial
assumption) leads to

dm o
I = Cm —~(m'Cm)m . (8

The n X n symmerric and positive definite matrix
C is the aurocorrelation matrix of the inputs:

C = E[x(0x()T), (Cl,, = El£,£,). )

The learning equation (8) has been analyzed by the
author in Refs. 1 and 12 and the result is:

As 1 tends w infinity, The Euclidean norm of vector
m(1) tends to one and m{t) tends to ¢; (or —~c,), the
aigenvector of C corvesponding to the largest eigenvalue, if
m{(Q) 1s not orthogonal to ¢y. This is the coefficient vector
of the largest principal component in the inputs; in other
words, ¢, defines that one-dimensional subspace on which
the squared magmirude of the projection of mput x s
maximal on the average.

The latter property means that among all unit
veciors u, the vector ¢; maximizes the “energy”
functional E(u"x):. But (m(t)"x)? = v’ which is
therefore maximized on the average. Thus also the
output 1 of the unit wiil be large if the tnput is similar
to the inputs which occurred during leaming. The
unit acts as a principal component analyzer, a similarity
detector, and a maicked filter for its inputs. -

Note that the negative internal feedback stabilizes
the weights in the sense that their squared sum over
the unit stays constant independently of the strengths and
values of the inputs even though there is no explicit
normalization. :

In fact several such units, each tuned to a different
signal class, could alrcady be used as a classifier
network, since with a high probability the strongest
response for an input vector to be classified would be
obtained from the unit sensitive 10 the class of the
input vector. This type of units have been used by
Kohonen? in his self-organizing network and by
Linsker* in his perceptual feature-detection network.
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4. The Subspace Network
4.1. The learning equation

Subspaces and projection operations have an im-
portant role in the theories of distributed data
processing and associative memories.> The same
formalism also applies to pattern recognition.>* Many
network models have been introduced earlier for the
implementation of the linear optimal projection map-
pings for signal patterns.’"!

Consider the net of & closely interacting neural
units of Fig. 2. For each unit, the integrated effect of
the inputs, »; is again obtained from Eq. 1. The
synaptic weights vary again according to the Hebbian
law with internal feedback, expressed in Eq. 3, but
now the feedback is more complicated. It is not
restricted to individual units, but the v, terms of all
the units give rise to a net effect reducing the strength
of the input signal:

dp i
dt

= avié; ~ {3 (amn

with the internal feedback effect {; given by
k
L= 2 it - (12
g}

The feedback effect £; which reduces the strength
of the iith input &; is obtained as the weighted sum of
all factors vy, A ranging over the units in the net. In
Hebbian terms, Eq. 11 means that an input streng-
thens a weight on a unit if both the input and the net
effect of all the inputs and weights of that unit are
high, bur this effect is reduced if the weights of the
other units connecting with that input line are already
strong.

Another way to visualize Eqs. 1, 11 and 12 as a
network topology would be a rectangular crossbar

inputs, internal feedback
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Fig. 2. The Subspace Network .
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switching net with the signals {; as actual ourputs and
the signals »; mediating in the input-output function:
first the inputs &; are integrated (vertically in Fig. 2)
into signals w; according to Eq. |, then each output
line compuies its own weighted sum {horizontally)
according to Eq. 12. This would be a purely linear
net.

Equation }1 has now guite interesting mathematic-
al consequences. Reverting again to vector-matrix
notation, define the n-vector z as

z=(l,. .50 (13)
the %-vector v as
=0, (14)
and the n X k-matrix M as
M=[pl=(my,...,m). (15)

The columns of M are the weight vectors of the units.
Then Eq. 1 becomes

v=MTx, (16)
Eq. 12 becomes

z = Mo, (a7
and the learning equation {11) becomes

% - atc—2p" . (8)

Note that if z were considered the actual output
vector from the net, then the total linear input-
output function would be

z = MMT™x. 19)

Developing Eq. 18 further yields
dM .
— = alx - MM x)x'M
dt
= a[xx™M - MM Txx"M)] . (20)
Again, if the input data arrive as samples from
some stationary pattern class distribution with auto-

correlation mairix given by Eq. 9, then Eq. 20 can be
averaged 1o vield

% = afCM — MIMTCM)] . (1)

There has been some analysis of this and related
learning rules by the present author'? and by
Karhunen.'® Due to the third-degree matrix polyno-
mial in Eq. 21, the equation is difficult to solve and a
rigorous mathematical analysis does nmot yet exist,
aithough the corresponding equation for M M" can be
solved in closed form under certain initial conditions.
The properties obtained from the learning equation
{21} have been studied by computer simulations and
they indicate that the behavior is analogical to that of
the one-dimensional case of Eq. 8. The resuits can be
summarized as follows:

Mairix M(1) tends to have orthonormal columns and as
t grows, the columns of M(t) span the same subspace as
vector ¢, . .., ¢, which are the eigenvectors of C
corresponding to the k largest eigenvalues. These are the
coefficient vectors of the k largest principal components in
the inputs; in other words, ¢, . . ., c;y define that
unique k-dimensional subspace on which the squared
magnitude of the projection of input x 1s maximal on the
average.

The last property means that matrix MM 7 tends to
a projection operator on the k-principal component
subspace. If z = MM"x is considered as the actual
output from the network, then it gives the corres-
ponding projection of input vector x. Also, internally,
the squared sum of the terms »; represents the
projection magnitude since

&
v? = o) = x"MMTx = x"TMM MM "x
=1

1

= 1MM7x|? = ||=|” . @

If the functional in Eq. 22, or some monotonic
function of it, can be computed from the outputs of
the units, then the network acts as a powerful
similarity detector for inputs belonging to the same
statistical distribution as the inputs during learning.

Note that again there is no explicit normalization or
orthogonalization in algorithm (11). It follows entirely
from the special type of feedback within the net. Due
1o this term, the connection weights stay bounded, the
weight vectors of the different units within the net
become orthonormal, and the weight matrix becomes
a k-principal component detector. .

The learning rule (11) has been tested for some daia
sets. In Ref. 15 a simple set of artificial stationary
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input data was used. The differential equation was
discretized. The input vectors x, were five-
dimensional and the eigenvalues of their correlation
matrix C were A, = 0.853, X, = 0.301, A; = 0.163,
Ay = 0.053, and As = 0.030. The number of units in
the cluster, &, was chosen as 3. Equation 19 (equiva-
lent with (¥1)) was discretized to the form

My =Mooy + alxexy” My
"_Mk—l(Mk—ITxkka M1} 23

with o being a small constant. The vectors x, were
picked randomly from their distribution. Initially, the
weight vectors m,, m;, and m3 were randomly chosen
vectors of unit length; it turns out that they had 1o be
at least roughly orthogonal at the start.

0 0.5758 0.8420 0.6593
40 0.8540 0.8378 0.7510
80 0.9299 0.9124 0.9333

120 0.9984 0.9759 0.9785
160 0.9827 0.9962 0.9702
200 0.9761 0.9339 0.9880

Table I. Comparison of the weight vectors with the correct
cigenvector subspace. First column: iteration number. Second,
third, and fourth columns: projections of m,, my, and m;,
respectively, on the correct eigenvector subspace. A value of one
denotes complete fit.

Knowing the exact distribution of the inputs, it is
possible also to compute the ecigenvectors of the
correlation matrix C. Then it is easy to test whether
the weight vectors, in the course of time, become
orthonormal and span the same subspace as the three
dominant eigenvectors of C. Table 1 shows the
projections of m,, m, and m; on this theoretically
correct subspace. Afier 200 input vectors have been
used in algorithm (22), the projections are already
close to 1. As for the orthonormality, Table II shows
the matrix M7 ;00 Mzg0. If the columns of M are
orthonormal, then this matrix is the unit matrix. The
matrix of Table Il is a good approximation to the unit
matrix. The small differences in Tables I and IF as
oompamdtothctheomimllymmﬂtsaredmm
random fluctuations in the clements of My (the
connection weights) caused by the varying input data.
With a suitably decreasing parameter a the €rTors
would tend to zero. Other simulations with high-
dimensional real input vectors (texture data) showed
exactly the same behavior.
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—0.0061 1020 —0.0066

1.015  -0.0061  0.0016
0.0016 -—0.0066  1.011

Table [I. Matrix MTs00 M 0. Elements are inner products of
weight vectors m,, m;, and m;.

4.2 The Subspace Network as a classifier

In pattern recognition, the primary goal is to build
an explicit or implicit model for the pattern classes
such that the classification error for new data is
minimized, or equivalently, the generalization ability
of the classifier is maximized. A geometrical viewpoint
is often useful. Given the representation for the classes
and the distance function or other classification rule,
the class regions are completely defined in the
high-dimensional pattern space.

In the subspace methods of patiern recognition,**
the primary modet for a class is a subspace, and the
classification criterion for a pattern x is its orthogonal
distance from the class subspaces: x is classified to the
class which gives the shortest such distance. The
subspace defines a class as the general linear combina-
tion of some spanning basis vectors. This view,
although certainly not generally valid for any type of
data, seems 10 be particularly useful for patterns like
spectra and kistograms. Still, it must be emphasized
that the class boundaries of the method are generally
nonlinear.’

Consider, for example, the acoustic power spectrum
emitted by some object. The elements of vector x are
then the energies in the different spectral bands.
Assume that the spectra consist of a set of characteris-
tic modes at fixed frequencies but with intensities that
are excited randomly. Then an arbitrary realization of
the spectrum is obviously a linear combination of a
finite set of basis vectors. Classification of objects is
very similar to fitting the spectrum x to the different
class models in order to find out which model could
best explain the observed x. This is exactly equivalent
to subspace projections. As indicated above, the
Subspace Network is able to derive such models from
its input data with suitable learning strategies.

Imagine now that in a supervised classification
situation with K classes, a network consists of K
subnetworks or modules similar to the onc described
above. Within each module, the numbers of units
Y, ..., kY may be different but, for simplicity,
assume in the following that each module has exactly &
units. Each subnetwork receives the same inputs. The
training of the classifier is as follows: S
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1. Input a training vector to all modules. At the
same time, input a special rraining input 1o all modules;
it is one for the module corresponding to the correct
class for the input vector (call it module &) and zero
otherwise.

2. Form the output of each module as a monotoni-
cally increasing function of the term 3% j = o
{which, according to Eq. 21, gives the prolcmon
magnitude). Find the module that gave the largest
output {call it module b).

3. If module ¢ and module b are the same (correct
classification for the training input vector), then
modify the weights of that module according to
Eq. 11 with a positive value for «, increasing the
similarity of the training vector with the subspace
represented by that module.

4. If module a and modulie b are not the same
{incorrect classification for the training input vector),
then there are at least two feasible strategics:

4a. Modify only module ¢ with positive a.

4b. Modify module a with positive a and module b
with negative «, increasing the similarity of the
training vector with the subspace of module a and
decreasing it with that of module b.

The training is iterated several times over all the
input vectors. A good choice for the initial values of
the weight vectors for each module is a set of random
vectors of unit length, which should be roughly
orthonormal within each module but otherwise inde-
pendently chosen within different modules.

In fact strategy 4a corresponds to the so-cailed
Clafic algorithm,'® strategy 4b to the learning sub-
space methods (LSM,” ALSM®) within the methodol-
ogy of subspace classifiers.

5. Classification Results

The classification results given in the following
have mostly been obtained by using the practical
short-cut algorithm ALSM, explained in detail in
Ref. 5, instead of simulating the Subspace Network as
such. However, in some cases at least the network and
the computational algorithm are equivalent.

Some applications of the subspace method have
been speech recognition’’ and color discrimination.'’
Recently, an extensive series of tests have been
conducted on the classification and scgmentation of
textures using the subspace formalism; for a review,
see Ref. 18 and the references therein. One test,
explained in more dewil in Ref. 19, is bricfly ex-
plained here.

Texture features are known to contain significant
discriminatory information for image segmentation in
2 varicty of applications like terrain classification from
remote sensing images, industrial robot vision, and
biomedical image analysis. Some of the commonly
used statistical texture features are based on Fourier
spectra, gray level cooccurrence and difference histo-
grams, run length matrices, spatial domain filter
masks or random field models like autoregressive or
Markov models.2® The popularity of feature sets based
on second-order statistics originates from studies of
the human visual system.?!

As test material, 10 texwmre images from the
standard source, the Brodatz album,” were used
(numbers D16, D33, D34, D49, D57, D68, D77,
34, D93, and D103). Each image was digitized to
256 x 256 x 8 bits. The textures are shown in
Fig. 3.

5.1. Feature extraction.

The images were compressed by histogram
equalization®* into 4 grey levels and N x N windows
were chosen at random locations. In these experi-
ments, 23 X 23 texture windows were used. Each

R
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Fig. 3. The ten Brodatz textures used as test maierial. -
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such texture window was represented by a feature
vector for subspace classification using either the
Subspace Network or an approximating algorithm.
The feature extraction was as follows:

1. A number of symmetric cooccurrence matrices
with varying displacements® were computed for each
texture  window. The cooccurrence  matrix
A1, 1; dk, dl) for horizontal displacement dk and
vertical displacement 4! is defined as follows: the jth
element of the matrix is equal to the number of pixel
pairs in the sampling window such that the displace-
ments between the two pixels are dk and dl, and one
pixel has grey level i, the other has grey level ;.

Since the number of grey levels was 4, the matrix
size is 4 > 4. For these textures, it turned out that
four good displacements are (1,0}, {2,£2), (0,%3),
and (£3,2).

2. Each of the four cooccurrence matrices for a
given texture was then stacked row by row into a 16
component vector, and these four vectors were
concatenated to form a 64 component feature vector
for the 23 x 23 texture window.

Such 64 component vectors, representing second-
order statistics of the textures in different orientations
and displacements, are believed to capture effectively
a large amount of the discriminatory information
contained in the texture window. They are fairly
insensitive to the texture window size and location
and, despite their relatively iarge dimensionality, are
still conveniently classified with the subspace method.
Such vectors were the input for the classifier.

5.2. Classification

Two independent sets of 80 texture windows from
each of the 10 textures were taken, and one of them
(containing 10 X $0 windows in all) was used as the
design set, the other as the test set for classifier error
estimation. In the shortcut algorithm, the class
correlation matrices C* were directly computex from
the training data together with their eigenvalues and
cigenvectors. The eigenvectors ¢'; corresponding to
the k largest eigenvalues are now the representation
for the ith class subspace and they were used to
compute the discriminant functions fz. (x7Y.
The Subspace Network approximates the same eigen-
vector subspace after learning according to strategy
4a, as indicated in Sec. 4.

In testing the classifier, the classnﬁauon accuracy

for the training data was 96 % and for the test data 90
% The difference reflects the fact that the sample
size, restricted by the sizes of the texture windows,
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was too small for a direct errer estimation procedure.
For completely reliable error estimation, a bootstrap-
ping technique in which the existing sample vectors
are resampled should be used.

The results can be further improved by the
Averaged Learning Subspace Method (ALSM) given
in Ref. 5. After one iteration step the classification
accuracy for the design set used in the iteration was 99
%. The corresponding accuracy for the test set was 93
%. The results did not improve with further itera-
tions. A similar improvement is expected from the
Subspace Network if the training strategy 4b of
Sec. 4.2. is used, since it corresponds to the Learning
Subspace Methods.

A comparison to other classifiers is presented in

Ref. 19. It shows that the subspace method is a good
classifier for textures.
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